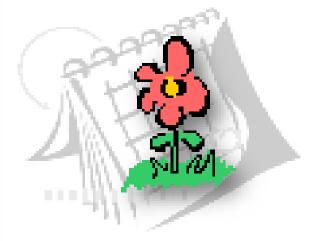


CEMENT MANUFACTURING PLANTS IN THE US

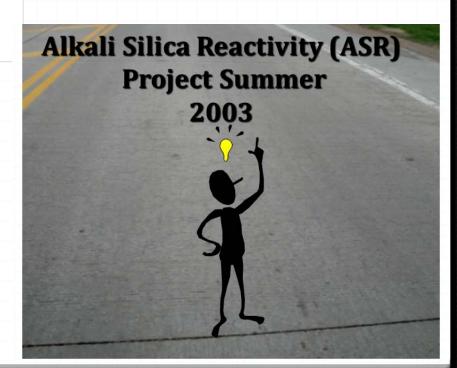
United States Portland Cement Plant Locations



- Terminal blend supply only
 - Consistency in the final product
 - Accuracy of Quality Assurance per project
 - If there is a supply issue of SCM's, the Department knows a year in advance

HISTORY

Designs PCC Pavement to Last 50 Years


Began to notice pavements less than 10 years old displaying severe deterioration

The the the

What is causing the early deterioration

FHWA (2008)

Report on Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction

AASHTO (2010)

Standard Practice for

Determining the Reactivity of
Concrete Aggregates and Selecting
Appropriate Measures for
Preventing Deleterious Expansion
in New Concrete Construction

AASHTO Designation: PP 65-10

American Association of State Highway and Transportation Officials 444 North Capitol Street N.W., Suite 249 Washington, D.C. 20001

US.Department of Transportation Federal Highway Administration

Determining the Reactivity of Concrete Aggregate

To determine if the Nebraska's Specifications meet the requirements of AASHTO PP 65-10

Aggregate Sources Evaluated

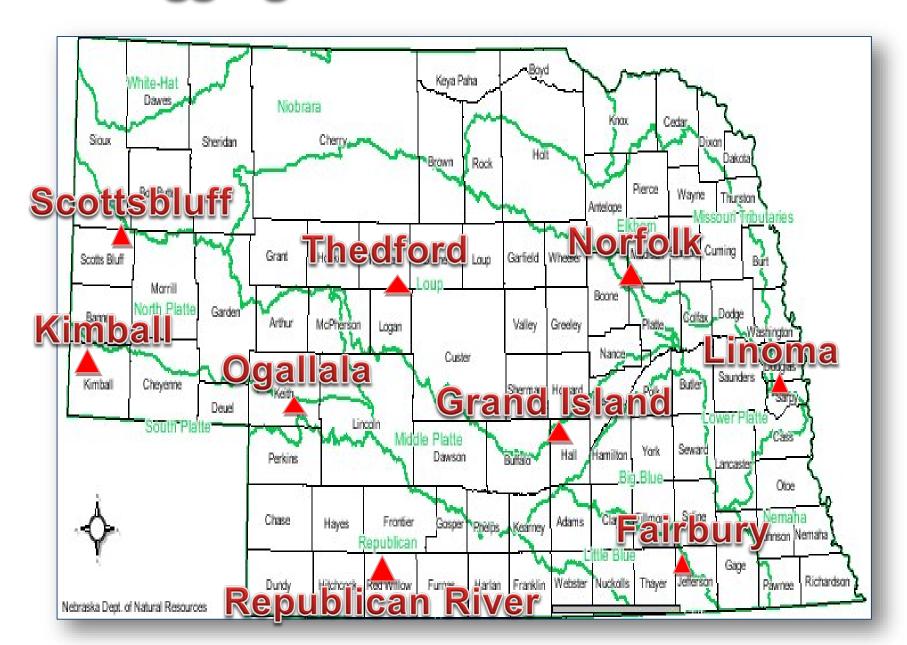


Table 4. Structures Classified on the Basis of the Severity of the Consequences Should ASR[†] Occur (Modified for Highway Structures from RILEM TC 191-ARP)

C1ass	Consequences of ASR	Acceptability of ASR	Examples ^{††}
-------	------------------------	-------------------------	------------------------

Table 6. Minimum Levels of SCM to Provide Various Levels of Prevention

T	Alkali level	Minimum Replacement Level†† (% by mass)						
Type of SCM	of SCM (% Na ₂ Oe)	Level W	Level X	Level Y	Level Z	Level ZZ		
Fly ash	< 3.0	15	20	25	35			
(CaO ≤ 18%)	3.0 – 4.5	20	25	30	40			
Slag	< 1.0	25	35	50	65	Table 7		
Silica Fume† (SiO ₂ > 85%)	< 1.0	1.2 x LBA or 2.0 x KGA	1.5 x LBA or 2.5 x KGA	1.8 x LBA or 3.0 x KGA	2.4 x LBA or 4.0 x KGA			

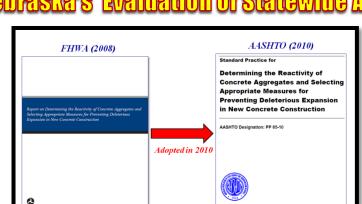
†The minimum level of silica fume (as a percentage of cementing material) is calculated on the basis of the alkali (Na₂Oe) content of the concrete contributed by the portland cement and expressed in either units of lb/yd³ (LBA in Table 6) or kg/m³ (KGA in Table 6). LBA is calculated by multiplying the cement content of the concrete in lb/yd³ by the alkali content of the cement divided by 100. For example, for a concrete containing 500 lb/yd³ of cement with an alkali content of 0.81% Na₂Oe the value of LBA = 500 x 0.81/100 = 4.05 lb/yd³. For this concrete, the minimum replacement level of silica fume for Level Y is 1.8 x 4.05 = 8.1%. KGA is calculated by multiplying the cement content of the concrete in kg/m³ by the alkali content of the cement divided by 100. For example, for a concrete containing 300 kg/m³ of cement with an alkali content of 0.91% Na₂Oe the value of KGA = 300 x 0.91/100 = 2.73 kg/m³. For this concrete, the minimum replacement level of silica fume for Level X is 2.5 x 2.73 = 6.8%. Regardless of the calculated value, the minimum level of silica fume shall not be less than 7% when it is the only method of prevention.

†† Note: the use of high levels of SCM in concrete may increase the risk of problems due to deicer salt scaling if the

					(Table 1- AASHTO PP 65-10)	(Table 2- AASHTO PP 65-10)	(Table 3- AASHTO PP 65-10)	(Table 6- AASHTO PP 65-10)
Aggregate Type Location	ASTM C 1260 14 days Results (%)	ASTM C 1260 28 days Results (%)	ASTM C 1293 1 Year Results (%)	Description of Agg. Reactivity	Aggregate Reactivity Class	Determining the Level of ASR Risk	Determining Level of Prevention	Mim. Replacement Level of SCM
Platte River Grand Island	0.26	0.39	0.09	Moderate Reactive	R1	Level 3	X	20
Dry Pit Kimball	0.25	0.32	0.21	Highly Reactive	R2	Level 4	Υ	25

Performe

					(Table 1- AASHTO PP 65-10)	(Table 2- AASHTO PP 65-10)	(Table 3- AASHTO PP 65-10)	(Table 6- AASHTO PP 65-10)
Aggregate Type Location	ASTM C 1260 14 days Results (%)	ASTM C 1260 28 days Results (%)	ASTM C 1293 1 Year Results (%)	Description of Agg. Reactivity	Aggregate Reactivity Class	Determining the Level of ASR Risk	Determining Level of Prevention	Mim. Replacement Level of SCM
Platte River Grand Island	0.26	0.39	0.09	Moderate Reactive	R1	Level 3	Х	20
Dry Pit Kimball	0.25	0.32	0.21	Highly Reactive	R2	Level 4	Y	25
Republican River Indianola	0.34	0.48	0.45	Very Highly Reactive	R3	Level 5	Z	35


					(Table 1- AASHTO PP 65-10)	(Table 2- AASHTO	(Table 3- AASHTO	(Table 6- AASHTO
Aggregate Type Location	ASTM C 1260 14 days Results (%)	ASTM C 1260 28 days Results (%)	ASTM C 1293 1 Year Results (%)	Description of Agg. Reactivity	Aggregate Reactivity Class	Determining the Level of ASR Risk	Determining Level of Prevention	Mim. Replacement Level of SCM
Platte River Grand Island	0.26	0.39	0.09	Moderate Reactive	R1	Level 3	X	20
Dry Pit Kimball	0.25	0.32	0.21	Highly Reactive	R2	Level 4	Y	25
Republican River Indianola	0.34	0.48	0.45	Very Highly Reactive	R3	Level 5	Z	35
North Platte River Scottsbluff	0.33	0.46	0.15	Highly Reactive	R2	Level 4	Y	25

					(Table 1- AASHTO PP 65-10)	(Table 2- AASHTO PP 65-10)	(Table 3- AASHTO PP 65-10)	(Table 6- AASHTO PP 65-10)
Aggregate Type Location	ASTM C 1260 14 days Results (%)	ASTM C 1260 28 days Results (%)	ASTM C 1293 1 Year Results (%)	Description of Agg. Reactivity	Aggregate Reactivity Class	Determining the Level of ASR Risk	Determining Level of Prevention	Mim. Replacement Level of SCM
Platte River Grand Island	0.26	0.39	0.09	Moderate Reactive	R1	Level 3	X	20
Dry Pit Kimball	0.25	0.32	0.21	Highly Reactive	R2	Level 4	Y	25
Republican River Indianola	0.34	0.48	0.45	Very Highly Reactive	R3	Level 5	Z	35
North Platte River Scottsbluff	0.33	0.46	0.15	Highly Reactive	R2	Level 4	Y	25
South Platte River Ogallala	0.15	0.25	0.06	Moderate Reactive	R1	Level 3	X	20

					(Table 1- AASHTO PP 65-10)	(Table 2- AASHTO PP 65-10)	(Table 3- AASHTO PP 65-10)	(Table 6- AASHTO PP 65-10)
Aggregate Type Location	ASTM C 1260 14 days Results (%)	ASTM C 1260 28 days Results (%)	ASTM C 1293 1 Year Results (%)	Description of Agg. Reactivity	Aggregate Reactivity Class	Determining the Level of ASR Risk	Determining Level of Prevention	Mim. Replacement Level of SCM
Platte River Grand Island	0.26	0.39	0.09	Moderate Reactive	R1	Level 3	X	20
Dry Pit Kimball	0.25	0.32	0.21	Highly Reactive	R2	Level 4	Y	25
Republican River Indianola	0.34	0.48	0.45	Very Highly Reactive	R3	Level 5	Z	35
North Platte River Scottsbluff	0.33	0.46	0.15	Highly Reactive	R2	Level 4	Y	25
South Platte River Ogallala	0.15	0.25	0.06	Moderate Reactive	R1	Level 3	X	20
Middle Loup River Thedford	0.29	0.39	0.19	Highly Reactive	R2	Level 4	Y	25
Little Blue River Fairbury	0.28	0.48	0.10	Moderate Reactive	R1	Level 3	Х	20

					(Table 1- AASHTO PP 65-10)	(Table 2- AASHTO PP 65-10)	(Table 3- AASHTO PP 65-10)	(Table 6- AASHTO PP 65-10)	
Aggregate Type Location	ASTM C 1260 14 days Results (%)	ASTM C 1260 28 days Results (%)	ASTM C 1293 1 Year Results (%)	Description of Agg. Reactivity	Aggregate Reactivity Class	Determining the Level of ASR Risk	Determining Level of Prevention	Mim. Replacement Level of SCM	IP WITH 75%
Platte River Grand Island	0.26	0.39	0.09	Moderate Reactive	R1	Level 3	х	20	
Dry Pit Kimball	0.25	0.32	0.21	Highly Reactive	R2	Level 4	Υ	25	
Republican River Indianola	0.34	0.48	0.45	Very Highly Reactive	R3	Level 5	Z	35	
North Platte River Scottsbluff	0.33	0.46	0.15	Highly Reactive	R2	Level 4	Y	25	
South Platte River Ogallala	0.15	0.25	0.06	Moderate Reactive	R1	Level 3	X	20	
Middle Loup River Thedford	0.29	0.39	0.19	Highly Reactive	R2	Level 4	Y	25	
Little Blue River Fairbury	0.28	0.48	0.10	Moderate Reactive	R1	Level 3	х	20	
Elkhorn River Norfolk	0.40	0.57	0.30	Very Highly Reactive	R3	Level 5	Z	35	

Nebraska's Evaluation of Statewide Aggregate Reactivity

Republican River Represent Aggregate Pit Locations tested Republican River

Description Aggregate Type of Agg. Location

> **Platte River Grand Island Dry Pit**

> > Kimball

Ogallala

Middle Loup River

Moderate Reactive Highly

Reactive

Reactivity

20 25

35

25

20

25

20

(Table 6-

AASHTO

PP 65-10)

Mim.

Replacement

Level of SCM

15 20

Type I/II Cement

Low Alkalinity

Mim.

Replacement

Level of SCM

Mitigate ASR

25

20

15

20

Nebraska's Spec

Since Late 2004

IP with 25%

Class F

Very Highly Republican River Indianola Reactive Highly North Platte River Scottsbluff Reactive South Platte River Moderate

Reactive

Thedford Reactive Moderate Little Blue River **Fairbury** Reactive

Indianola's Aggregate Non-Approved Aggregate

Elkhorn River Norfolk **Platte River**

Linoma

Very Highly Reactive

Highly

Reactive

Highly

35

25

15 25

20

Route- Built	Project Number	Cement Type	ASTM C 1293	Min. Replacement Level of SCM to Provide Various Level s of Prevention by AASHTO PP 65-10	Mim. Replacement Level of SCM Mitigate ASR Due to Low Alkali Cement
Chester Hebron 1995	F-81-1 (1017)	Type I Added 17% Class F	0.10 Moderate Reactive	20%	15%

Route- Built	Project Number	Cement Type	ASTM C 1293	Min. Replacement Level of SCM to Provide Various Levels of Prevention by AASHTO PP 65-10	Mim. Replacement Level of SCM Mitigate ASR Due to Low Alkali Cement
Chester Hebron 1995	F-81-1 (1017)	Type I Added 17% Class F	0.10 Moderate Reactive	20%	15%
In Ansley 2001	S-2-3 (1019)	Type I Added 17 % Class F	0.19 Highly Reactive	25%	20%

Route- Built	Project Number	Cement Type	ASTM C 1293	Min. Replacement Level of SCM to Provide Levels of Prevention by AASHTO PP 65- 10	Mim. Replacement Level of SCM Mitigate ASR Due to Low Alkali Cement
Chester Hebron 1995	F-81- 1(1017)	Type I Added 17% Class F	0.10 Moderate Reactive	20%	15%
Ansley 2001	S-2-3 (1019)	Type I Added 17 % Class F	0.19 Highly Reactive	25%	20%
Norfolk East 2005	F-275-6 (1020)	Led with 98 Spec Type 17% IPN +9% C	0.30 Very Highly Reactive	35%	25%

NEBRASKA

Good Life. Great Journey.

DEPARTMENT OF ROADS

Interground/Blended Cement Approval Process

For Concrete Applications:

- NDOR no longer maintain Supplemental Cementitious Materials (SCM's) on the Approved Product List (APL) for the following products:
 - Fly Ash (C&F), Calcined Clays (N-Pozzolan), and Slag
- NDOR allows the use of ASTM C 1697- Standard Specification for Blended Supplementary Cementitious Materials
- NDOR allows the use IP and IT cement in accordance with ASTM C595

Supplier Approval Process for Blended SCM's

Supplier when using ASTM C 1697

- The supplier reports Chemical Composition for the final SCM's
 - NDOR verifies the chemical composition of the final blend
 - The Final SCM's blend is reported by the classification of SCM's final Blended SCM_b

```
For Example :

A binary mixture SCM<sub>b</sub>-65F/35C

65% class F and 35% C fly ash
```

Supplier Acceptance Requirements

Interground/Blended Cement

- The supplier shall conform to ASTM C 595
 - NDOR verifies the chemical and physical composition of the final Interground/Blended Cement
 - NDOR pre-establish (CaO/SiO2) ratio
- Supplier provides the Alkali Silica Reaction (ASR) testing
 - (ASTM C 1567 less than 0.10% @ 28 days)
 - Platte River and Norfolk aggregate
 - NDOR verify ASTM C 1567
- Total Cement Replacement with SCM's
 - 20% min
 - 40% max

Project Level Quality Assurance

- Cement is Sampled and Tested
 - 750 tons
 - NDOR verifies pre-established
 - (CaO/SiO₂) ratio

Concrete Tough

