High-Volume Recycled Materials for Sustainable Pavement Construction

> 2017 NCC Fall Meeting Minneapolis, MN September 20, 2017

Brett Trautman, P.E. Physical Laboratory Director Missouri DOT

Research Team

Kamal Khayat, Missouri S&T

- Seyedhamed Sadati, PhD Candidate
- Jeffery Volz, University of Oklahoma
- David Lange, University of Illinois-Urbana Champaign
- Alex Shin, Southern University of Baton Rouge, LA
- Kaan Ozbay, New York University

Research on Concrete Applications for Sustainable Transportation

- 6

Research Objective

To develop eco-friendly concrete mixtures with at least 50% of mass replaced by recycled materials for pavement application

- Two types of concrete pavements:
 - Eco-friendly concrete for single layer pavement
 Eco-friendly concrete for two-lift pavement

RCA Selection

RCA Materials

Aggregate	Specific gravity	Dry rodded unit weight (pcf)	Absorption (%)	Los Angles abrasion (%)	Source	
Fine RCA I	2.41	-	6.8	-	Lambert Airport, I	
Fine RCA II	2.11	-	7.33	-	Lambert Airport, II	
Fine RCA III	2.10	-	9.29	-	Gen2 Rocks	
Fine RCA IV	2.05	-	10.47	-	Surmier Recycling	
Fine RCA V	1.90	-	14.19	-	Missouri Bottom Road	
Coarse RCA I	2.38	91.0	4.2	33	Lambert Airport, I	
Coarse RCA II	2.35	90.2	4.46	33	Lambert Airport, II	
Coarse RCA III	2.21	86.1	6.66	43	Surmier Recycling I	
Coarse RCA IV		Rejected in vis	ual inspection	_	Surmier Recycling II	
Coarse RCA V	2.32	88.4	4.99	35	Gen2 Rocks	
Coarse RCA VI	2.15	85.0	8.17	43	Missouri Bottom Road	
Coarse RCA VII	2.35	89.7	4.56	41	Laboratory produced	

Packing Density

Fine-to-Aggregate ratio	0-100% (vol.)
Coarse aggregate	Dolomite, Coarse RCA
Fine aggregate	Sand, Fine RCA
Coarse RCA content	0-100%
Fine RCA content	0-50%

S/A	C-RCA	F-RCA	Scenari	0	Replications
	0	0	<u> </u>		
0, 0.20, 0.30, 0.35, 0.4,	30%	0	aye		
	30%	20%	do		
	50%	0]]]]]]]]]]]]]]]]]]]		2
0.45, 0.50, 0.55, 0.65,	50%	50%		<u>د</u>	
1.00	60%	40%	Sing	aye	
	70%	30%		E E	
	70%	50%		3otto	
	100%	50%	_		

Gyratory Compactor

Example Test Result

Example Test Result

Binder Type Optimization

Concrete Equivalent Mortar

Mi prop	xture ortions	w/cm	Cementitious materials (lb/yd ³)	Water (lb/yd³)	Sand (lb/yd ³) Coarse aggregate(lb/yd ³)		Sand equivalent to coarse aggregate (lb/yd³)		
Mo Po	1oDOT- PCCP 0.4 545		545	218	218 1260 1890		-		
С	EM	EM 0.4 545		218	1260 -		166		
	Property			Testing age					
	Compressive strength		rength	1, 7, 28, 56, and 91 days					
	Carbonation depth			30-d and 50-d exposure to accelerated environment					
	Electrical resistivity			28, 56, and 91 days					
	Shrinkage			1week of moist curing, measurement up to 120 days					
	Cost			\$/ ton of binder					
	CO ₂ emission			kg CO ₂ / kg binder					

Testing Protocol

Mixture No.	OPC	GGBS	FA-C	FA-F	GP
1	100	-	-	-	-
2	50	-	50	-	-
3	50	-	50	-	-
4	50	50	-	-	-
5	30	70	-	-	-
6	50	15	35	-	-
7	35	30	35	-	-
8	30	20	50	-	-
9	45	40	15	-	-
10	50	50	-	-	-
11	40	10	50	-	-
12	40	10	50	-	-
13	35	50	15	-	-
14	50	25	25	-	-
15	30	20	50	-	-
16	30	45	25	-	-
17	30	70	-	-	-
18	50	-	-	50	-
19	50	-	-	50	-
20	50	15	-	35	-
21	35	30	-	35	-
22	30	20	-	50	-
23	40	35	-	25	-
24	40	10	-	50	-
25	40	10	-	50	-
26	30	55	-	15	-
27	50	25	-	25	-
28	30	20	-	50	-
29	30	45	-	25	-
30	90	-	-	-	10
31	80	-	-	-	20
32	70	-	-	-	30
33	60	-	-	-	40
34	50	-	-	-	50

91-day Compressive Strength

91-day Bulk Resistivity

120-day Shrinkage

Glass Powder

Glass Powder

Glass Powder

Cost & Emission Values

	OPC	FA-C	FA-F	GGBS
Cost (\$/ton) *	100	45	68	91
Emission rate (kg/ton)	960	93	93	155

* Cost from 2014

Binder cost (\$/ton) = 100 × OPC + 45 × FA-C + 68 × FA-F + 91 × GGBS

 CO_2 emission (kg/ton of binder) = 960 × OPC + 93 × Fly Ash + 155 × GGBS

Weighting

Factor	Compressive strength	Shrinkage	Cost	CO ₂ emission
Importance weight	3	5	5	3

Star Graph

Ranking Overall Performance

Testing Protocol

N	Mixture No.	Concrete type		C-RCA	F-RCA	w/cm	Binder type	
					(%)	(%)		
1	MoDOT Ref.				0	0	0.40	25% FA-C
2	Opt. Binder	-			0	0	0.40	35%FA-C+15%SL
3	30C-GP-37	-		Тор	30	0	0.37	35%FA-C+15%GP
4	30C-37	-		layer	30	0	0.37	
5	30C	-			30	0	0.40	-
б	30C15F-37	-			30	15	0.37	-
7	30C15F	-			30	15	0.40	-
8	40C15F	-			40	15	0.40	-
9	50C-37	-	Single		50	0	0.37	-
10	50C	-	layer		50	0	0.40	%SL
11	50C15F-37	-			50	15	037	+15%
12	50C15F	-			50	15	0.40	
13	50C30F				50	30	0.40	35%H
14	50C40F				50	40	0.40	
15	60C30F	Bottom			60	30	0.40	-
16	70C-37	layer			70	0	0.37	-
17	70C				70	0	0.40	-
18	70C15F	1			70	15	0.40	-
19	70C30F	1			70	30	0.40	-

Fresh Properties

Air Content Range: 5.0 to 7.0%

	Mixture	Slump (in.)	Air content (%)
1	MoDOT Ref.	3.5	6.2
2	Opt. Binder	3.5	5.0
3	30C-GP-37	3.0	5.5
4	30C-37	3.5	6.8
5	30C	2.5	5.0
6	30C15F-37	3.5	5.0
7	30C15F	1.5	5.0
8	40C15F	2.5	5.9
9	50C-37	3.5	7.0
10	50C	2.0	5.4
11	50C15F-37	3.5	6.8
12	50C15F	2.5	5.6
13	50C30F	3.5	5.0
14	50C40F	2.0	5.0
15	60C30F	2.0	5.0
16	70C-37	3.0	5.5
17	70C	3.5	6.9
18	70C15F	2.0	5.4
19	70C30F	1.0	5.2

Compressive Strength (psi)

Flexural Strength (psi)

Modulus of Elasticity (ksi)

Split Tensile Strength (psi)

Surface Resistivity (kΩcm)

Bulk Resistivity (kΩcm)

Resistivity – Bulk vs. Surface

Resistivity – Bulk vs. Surface

Bulk Resistivity vs. Surface Resistivity 91-days

Dry Shrinkage

Top Layer (Two-Lift)

Dry Shrinkage Bottom Layer (Two-Lift)

Dry Shrinkage

Single Layer

Durability

0 3

Testing Protocol

	Mixture No.	So	cenario)	Coarse RCA (%)	Fine RCA (%)	w/cm	Binder type	Binder content (Ib/yd³)		
1	MODOT-PCCP				0	0	0.40	25% FA-C			
2	Opt. Binder				0	0	0.40	35%FA-C, 15% GGBS			
3	30C-GP-37			iyer	30	0	0.37	35%FA-C, 15% GP			
4	30C-37				30	0	0.37				
5	30C			Ē	30	0	0.40		545		
6	30C15F-37	-	5	ы	G.		30	15	0.37		545
7	30C15F		lay		30	15	0.40	35%FA-C, 15% GGBS			
8	50C-37		ngle		50	0	0.37				
9	50C15F-37	tom	Sii		50	15	0.37				
10	70C-37	Bott lay			70	0	0.37				

Fresh Properties

		Mixture	Slump (in.)	Air content (%)
Air Content	1	MoDOT Ref.	3.5	6.2
Range: 5.0 to 7.0%	2	Opt. Binder	3.5	5.0
	3	30C-GP-37	3.0	5.5
Slump	4	30C-37	3.5	6.8
Range: 1.5 to 3.5 in.	5	30C	2.5	5.0
	6	30C15F-37	3.5	5.0
	7	30C15F	1.5	5.0
	8	50C-37	3.5	7.0
	9	50C15F-37	3.5	6.8
	10	70C-37	3.0	5.5

Coefficient of Thermal Expansion (E-6 in/in/°F)

- Comparable performance for all mixtures
- MoDOT Ref. had the highest CTE value

	Mixture	CTE value
1	MoDOT Ref.	5.224
2	Opt. Binder	5.037
3	30C-GP-37	5.173
4	30C-37	5.187
5	30C	5.075
6	30C15F-37	5.064
7	30C15F	4.945
8	50C-37	5.136
9	70C-37	4.856

Salt Scaling

 ✓ RCA mixtures comparable to Opt. Binder mix.

	Mixture	Test cycle									
Wikture		5	10	15	20	25	30	35	40	45	50
1	MoDOT Ref.	0	0	0	1	1	1	1	1	1	1
2	Opt. Binder	0	1	1	1	2	2	3	3	3	3
3	30C-GP-37	1	1	2	2	2	3	3	3	4	4
4	30C-37	0	1	1	1	1	2	2	3	3	3
5	30C	0	0	1	1	1	2	2	3	3	3
6	30C15F-37	0	1	1	2	3	3	3	3	3	3
7	30C15F	1	1	1	1	2	2	3	3	3	3
8	50C-37	0	1	2	2	2	3	3	3	3	3
9	50C15F-37	1	2	2	2	3	3	3	3	3	3
10	70C-37	1	1	1	1	2	2	2	2	2	2

Durability Factor

 ✓ Good frost durability with DF higher than 88%

	Mixture	Durability factor (%)
1	MoDOT Ref.	95.6
2	Opt. Binder	92.5
3	30C-GP-37	88.8
4	30C-37	97.1
5	30C	90.5
6	30C15F-37	96.0
7	30C15F	94.5
8	50C-37	92.2
9	50C15F-37	96.0
10	70C-37	96.0

Abrasion Resistance

- Reducing w/cm improves abrasion resistance
- Slight increase due to C-RCA and F-RCA incorporation

	Mixture	Mass loss (g)
1	MoDOT Ref.	1.2
2	Opt. Binder	1.2
3	30C-GP-37	0.4
4	30C-37	0.8
5	30C	1.3
6	30C15F-37	0.7
7	30C15F	1.1
8	50C-37	0.5
9	50C15F-37	0.7
10	70C-37	0.7

Sorptivity

	Mixture	Initial sorptivity	Secondary sorptivity	
1	MoDOT Ref.	2.23 E-6	8.9 E-7	✓ Max sorptivity
2	Opt. Binder	1.49 E-6	5.5 E-7	rate was
3	30C-GP-37	0.95E -6	3.5 E-7	observed for
4	30C-37	1.23 E-6	5.1 E-7	the reference concrete
5	30C	1.89 E-6	6.0 E-7	✓ Reducing w/cm
6	30C15F-37	0.86 E-6	3.7 E-7	improves
7	30C15F	1.59 E-6	6.2 E-7	 ✓ Slight increase
8	50C-37	1.23 E-6	5.0 E-7	due to C-RCA
9	50C15F-37	1.13 E-6	4.9 E-7	and F-RCA
10	70C-37	1.29 E-6	5.3 E-7	

Conclusions

Single Layer Pavement

Property	MoDOT PCCP	Opt. Binder	30C	50C-37
28-d Compressive strength (psi)	5,585	6,020	5,800	6,815
91-d Compressive strength (psi)	6,745	7,325	6,600	7,905
56-d Modulus of elasticity (ksi)	5,915	6,415	5,565	5,850
56-d Flexural strength (psi)	700	765	715	750
90-d Shrinkage (με)	430	340	450	420
Durability factor (%)	96	93	91	92
De-icing salt scaling rating	1	3	3	3
Mass loss due to scaling	100	735	870	700

Two-Lift Pavement

Application		Top layer	Bottom layer		
Property	MoDOT PCCP	Opt. Binder	30C	50C15F-37	70C-37
28-d Compressive strength (psi)	5,585	6,020	5,800	6,020	6,745
91-d Compressive strength (psi)	6,745	7,325	6,600	7,105	7,690
56-d Modulus of elasticity (ksi)	5,915	6,415	5,565	5,450	5,500
56-d Flexural strength (psi)	700	765	715	740	755
90-d Shrinkage (με)	430	340	450	490	450
Durability factor (%)	96	93	91	96	96
De-icing salt scaling rating	1	3	3	3	2
Mass loss due to scaling	100	735	870	800	450

Project Location

 MoDOT's first RCA project
 Placed on the Mississippi River Bridge project in St. Louis

- Ramp to new bridge
- Coarse RCA only
- Four test sections
- Constructed April 29, 2013

Test Sections

Job Site

Looking East from bridge over I-44

Looking West from bridge over I-44

Looking towards Cass Ave.

Coarse Aggregate

C

Material	1" Max. L.S.	Coarse RCA
Bulk Sp. Gr.	2.652	2.396
Absorption	0.8	3.5
LA Abrasion	24	33
Soundness	3	32
Micro-Deval	15.0	14.4

% Passing

% Passing

	1 in.	100	100
	3/4 in.	88.5	80.3
Gradation	1/2 in.	40.5	31.1
	3/8 in.	20.1	16.8
	#4	3.1	3.3
	#8	1.8	1.8
	#200	1.4	0.7

Sieve

Mix Designs

	Test Sections				
<u>Design Criteria</u>	<u>No. 1</u>	<u>No. 2</u>	<u>No. 3</u>	<u>No. 4**</u>	
Cement Amount (lbs.)	546	546	546	546	
w/c Ratio	0.40	0.40	0.40	0.40	
% Fly Ash	25.0	25.0	25.0	25.0	
% Fine Agg.	42.5	42.5	42.5	42.5	
% Coarse RCA Agg.		40.0	30.0	30.0	
Design Air Content (%)	6.0	6.0	6.0	6.0	

** Two stage mixing

Reviewed September 2017 (48 months)

Control Mix No RCA

Reviewed September 2017 (48 months)

Reviewed September 2017 (48 months)

40% RCA

Reviewed September 2017 (48 months)

Reviewed September 2017 (48 months)

30% RCA

Test Section No. 4 Reviewed September 2017 (48 months)

30% RCA with two stage mixing

Questions

Office Phone: 573-751-1036 Email: Brett.Trautman@modot.mo.gov

https://library.modot.mo.gov/RDT/reports/TR201502/