

Jason Weiss, Oregon State University - Date September 20th, 2017

Update on Pooled Fund (First a Look Back)

TARGET: Improve Long-Term Durability

- Freeze-Thaw
- Salt Damage
- Chloride Ingress
- ASR
- Shrinkage & Cracking

Worked to develop an overall framework

Identified sections

- 6.5
- 6.6
- 6.7
- 6.8

Weiss et al. 2015

This is work done prior to the current pooled fund and led to a large portion of AASHTO PP-84

Barde et al. 2007

Performance Approach

Step 1

Assess Materials Using Standard **AASHTO** or **ASTM** tests

Step 2

Transform Test Results into Material **Properties**

Step 3

Relate Material Properties to Service Life **Using Exposure**

Step 4

Use Service Life to Establish Performance Grades

Oregon State University College of Engineering 100 lbs A

Think about Models

- Idealization Creating an Approximate Mathematical Model to Assess the World
- Example How Forces Act on A Structure and Cause Deformations
- Not Exact Engineers Must Understand Approximations etc...
- All models are wrong, but some models are useful. (G. Box)
- Can models push us in the correct direction, these will improve with time if we have 'good form and inputs'

Wind

Toward FT SLM

Oregon State University
College of Engineering

Develop the Sorption Based Modeling Concept

Relating the saturation level in concrete to a theoretical critical limit of saturation

Evaluate Properties of Typical Paving Mixtures

Measuring typical values of the properties of typical pavements

2

Develop Testing Procedures to Evaluate Concrete Mixtures

Developed Testing for Critical Saturation, Absorption, and Degree of Saturation

Work with SHA's on Shadowing Field Projects for PEM/PRS

Implementing Shadow Specifications in 17/18

Add in Statistical Variation To Assess Reliability

Using Monte Carlo Simulation of Measured Properties to Relate Variability to Life

FT Service Life Model

- Simple sorption based model is shown
- Important to recognize that we are not predicting FT damage; rather we are predicting a limit state
- Great framework
- Lets discuss the model inputs (tests that we will measure)

FT Model Inputs

Name				
Key Variable	Matrix Saturation	Critical Saturation	Secondary Sorption	Drying Factor
	S _{Matrix}	S Critical	dS ₂ /dt	ф
Level 1 - Test	Sorption Test 🙂	LGCC Test	Sorption Test	Beginning Tests 🙂
Level 1 – Model	OPC PB Model 😊	Develop – 20% 🙂	Develop – 85% 🙂	Develop – 5% ©
Level 2 – Test	Bucket Test \odot	N/A	NDT Test ©	Not Yet
Level 2 - Model	SCM GEM Model 🙂	N/A	Not Yet	Not Yet
Current SOTP	To Submit 1 T/M 😬	To Submit 1T	To Submit 1 T/M	Assume Value 😊

Weiss et al. 2017

Developing Test Methods

Weiss et al. 2017

Projected Timeline

Step 2

Step 3

Step 4

Early Fall

Pore Volume Water Sorption Degree of Saturation

Late Fall

Minor Revisions of Resistivity LTDSC

Spring

Express P. Soln P Soln Analysis (Test and Calc)

Summer

Salt Damage Critical Saturation

Stage 3: OSU Approach

Unify
Transport
Tests and F

Goal: complete theoretical framework to enable F-factor to replace existing transport tests first principles

GEMS & Reactive Transport

Goal:
Use computational models to simplify and complement field testing

Water
Transport &
Implications

Goal:
Use quantitative
neutron radiography
to better understand
moisture content
and movement

Rapid Test for Water Content

Goal:
Use test methods to measure water content before placmeent

Unify Test Methods

Unify
Transport
Tests and F

Goal: complete theoretical framework to enable F-factor to replace existing transport tests first principles

- Currently there are many transport tests that measure the 'same thing'
- Few people have taken the time to work toward unifying the test methods
- Work underway to unify various test methods (e.g., D via Barrett et al. 2015)
- Series of 'unifications to be ready by the end of the calendar year (more to do)
- Reduces tests & simplifies specifications

GEMS Modeling

GEMS & Reactive Transport

Goal:

Use computational models to simplify and complement field testing

 We know that moving forward we will use less OPC and more OPC+SCM mixtures

Can we predict the reaction products and

their volume

 Can we use these predictions inform the PEM models

 Simplify tests with simulation knowledge

Water Transport

Water
Transport &
Implications

Goal:

Use quantitative neutron radiography to better understand moisture content and movement

 Durability is related to curing and/or fluid transport

0% DOH

Use of NR

Rapid Water Content

Rapid Test for Water Content

Goal:
Use test methods to measure water content before placement

- Working on a test method that can be used for fresh concrete
- Very comfortable with it in the lab, additional work is needed to make sure it is robust and ready for the field
- At the current time we know that temperature corrections are very important as well as the role of ionic species which we are working on

Summary

 AASHTO PP84 is moving forward with great support from NCC, FHWA, and all of you ... thank you

 Our goal – Use tests that can be related to performance, simple tests and

physical models

 Framework has started still much to do – implement to fundamentals

 Please let us know as you begin to implement locally, happy to help

Thank you

Imagination is more important than knowledge.

- Albert Einstein

https://www.researchgate.net/profile/William_Weiss6