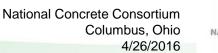
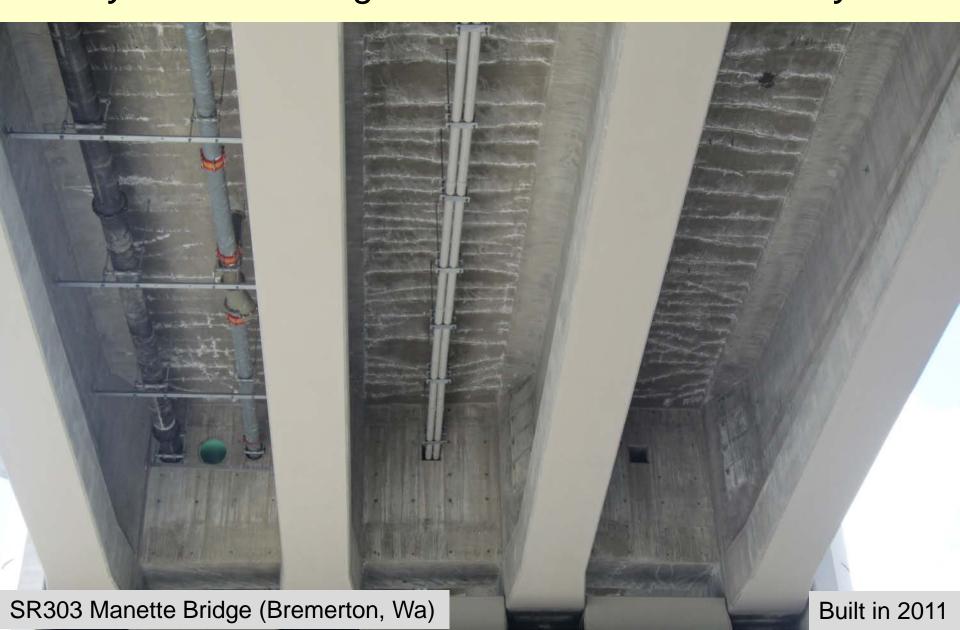
Evaluation of Performance Based Concrete For Bridge Decks

DeWayne Wilson

WSDOT Bridge Asset Management Engineer



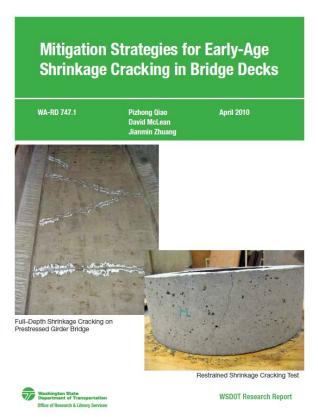


Problem - WSDOT has observed abnormal cracking in many concrete bridge decks over the last 10-15 years



What can we do to fix the cracking problem?

✓ Develop a performance based Concrete mix design for Bridge Decks



Concrete Bridge Deck Shrinkage Cracking Study

Washington State University (WSU) Study

Objectives:

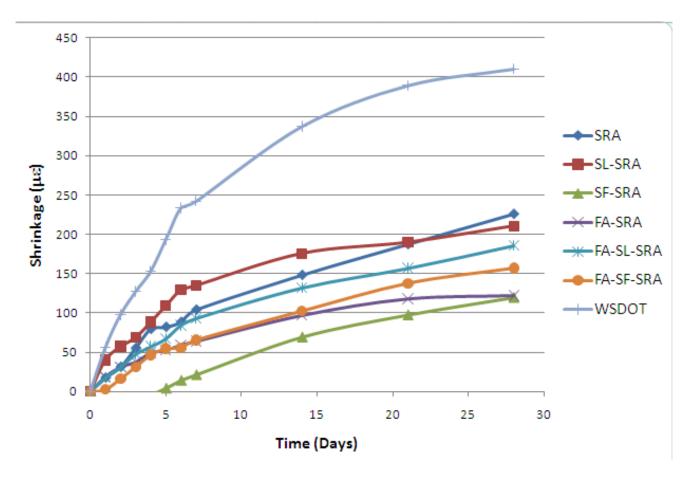
- Determine causes of shrinkage cracking
- Identify mitigation strategies
- Evaluate old WSDOT 4000D Mix Design
- Develop new mix designs (with improved properties)
- Provide recommendations on improved mix designs and practices.

WA-RD 747.1

http://www.wsdot.wa.gov/rese arch/reports/fullreports/747.1.pdf

Shrinkage Tests - WSU

Free Shrinkage

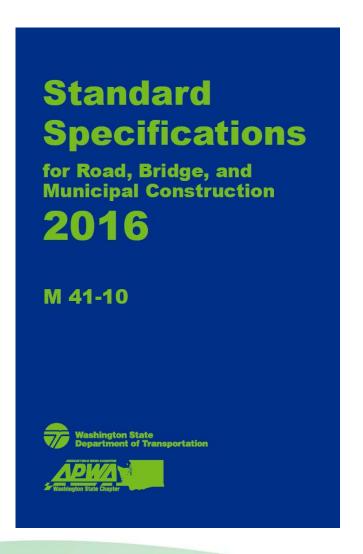


Shrinkage

AASHTO T 160

Shrinkage Test Results

WSDOT Class 4000D mix: 420 ± microstrains.



Summary of WSU Recommendations

- Recommend use of Shrinkage Reducing Admixture (SRA)
- Limit use of fly ash
- Use mix designs with less paste volume
- Increase size of coarse aggregate
- Recommend trial batches prior to production work

WSDOT Bridge Deck Performance Concrete Specs

http://www.wsdot.wa.gov/publications/manuals/fulltext/M41-10/SS2016.pdf

Performance Mix Design Requirements

	Traditional	Performance Based
Minimum 28-day Compressive Strength	4,000 psi	4,000 psi
Cement	Type I or II Portland	Type I or II Portland
Cementitious Content	735lbs minimum (660lbs cement & 75lbs fly ash)	No set limits (565lbs – 610lbs)
Fly Ash	Required	Optional
Nominal Max. Size Aggregate	1-inch	1½-inch
Water Reducing Admixture	Required	Optional

Performance Mix Design Requirements

	Traditional	Performance Based
Air Content	4.5% to 7.5%	4.5% to 7.5%
Freeze-Thaw Durability (instead of above air content requirement)	Not an option	3.0% min. air content 90% minimum durability factor after 300 cycles (AASHTO T 161)
Permeability	No requirement	Less than 2000 coulombs at 56 days (AASHTO T 277)
Length Change (shrinkage)	No requirement	Less than 0.032% at 28 days (AASHTO T 160)
Scaling	No requirement	Visual rating ≤ 2 after 50 cycles (ASTM C 672)
Crack Reducing Admixture	Not Used	Optional (Typically used)

Placing, Curing and Finishing Requirements

	Traditional	Performance Based
Temperature During Placement	Between 55°F and 90°F	Between 55°F and 75°F
Temperature Monitoring After Placement	Not Required	Seven days after placement
Curing & Finishing	 Transverse grooves are tined into the deck with metal combs after the concrete is sufficiently stiff Curing compound applied to surface a max. of 15 min. after tining Presoaked wet burlap and soaker hoses are applied to deck surface when deck has taken initial set. Wet burlap is kept in place for 14 days 	 Fog the deck immediately after finishing machine passes Apply presoaked burlap to top surface (no curing compound) Keep the burlap wet by fog spraying until initial set and it can be covered with soaker hoses and white reflective sheeting Wet burlap is kept in place for 14 days After cured, longitudinal grooves are ground into the deck using a diamond tipped saw.

Performance Deck Concrete Mix Design

3-20-13

Concrete Mix Design

Contractor	Submitted		itted By	Date	
Cascade Bridge	Bayview Redi-Mix, Inc.		3-12-2013		
Concrete Supplier	Plant Location		Plant Location		
Bayview Redi-Mix, Inc			Aberdeen 011, Raymond 041		
Contract Number	Contract Name				
	SR 101 Bone River				

Mix Design No. WSDT4DS130 Plant No. 011, 041

Cementitious Materials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement 4	→ Ashgrove, Seattle, WA	Type I-II 6-02.3(2)	3.15	460
Fly Ash ^a	Lafarge, Centralia, WA	Type F	2.58	150
GGBFS (Slag)				
Latex				
Microsilica				

Performance Deck Concrete Mix Design

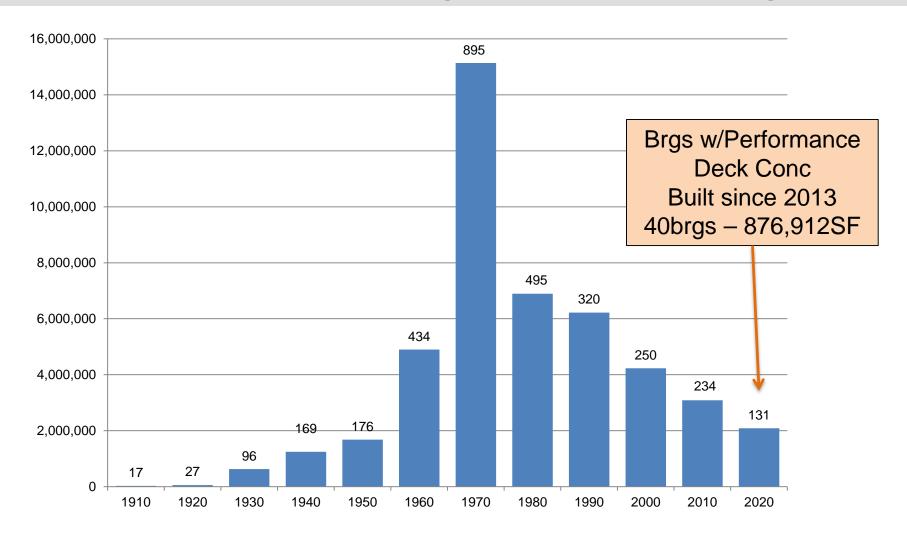
Concrete Admixtures	Manufa	acturer	Produ	ıct	Туре	Est. Range (oz/cy)	
Air Entrainment	BASF, Cleve	aland, OH	Micro-Air			1.15	
Water Reducer							
High-Range Water Reducer	BASF, Cleve	land, OH	Glenium 7500		F	20-30	
Set Retarder							
Other Shrinkage	BASF, Cleve	land, OH	Masterlife		M. M. C.	120-140	
	<u> </u>					<u>l</u>	
Water (Maximum) 230 Water Cementitious Ratio (Maxim	lbs/cy num) <u>0.38</u>		Is any of the water f	Recycled or Re	claimed?	Yes No	
Vater (Maximum) 230 Vater Cementitious Ratio (Maxim		2	-	•		-	
Vater (Maximum) 230		2 5,766	Mix De	sign Density	150.1	lbs/cf ^C	

Agency Use Only (Check appropirate Box)	
This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used	d on the bid items noted above
☐ This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is	being returned for corrections
Reviewed By: Am Lymu	4/16/13
PE Signature	Date

DOT Form 350-040 EF Revised 6/06 Distribution: Original - Contractor

Copies To - State Materials Lab-Structural Materials Eng.; Regional Materials Lab; Project Inspector

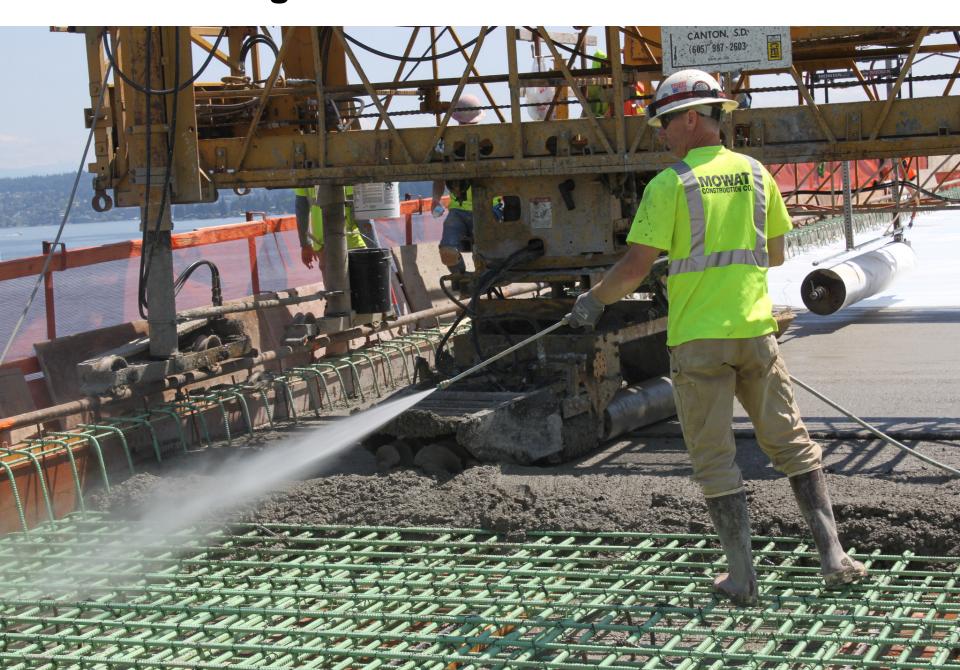
Performance Deck Concrete



SR105 Smith Creek Bridge Built in 2014

I-90 Gold Creek Bridge Built in 2012

WSDOT Vehicular Bridges >20 feet in length


3,241 Vehicular Structures (46.2M sq. ft.) (Average Age = 46 yrs)

New Bridges - Performance Deck Concrete

Placing Performance Deck Concrete

Curing Performance Deck Concrete

"Fogging"

Curing Performance Deck Concrete

Performance Deck Concrete Texture

Performance Deck Concrete Texture

Concrete Decks Evaluation Study

- Document the difference in cracking (Traditional vs Performance)
- Bridges built after 2008
- Visibility of the underside of deck
- Relatively simple geometry and easy access

WA-RD 845.1

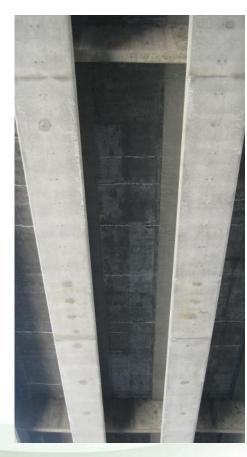
http://www.wsdot.wa.gov/rese arch/reports/fullreports/845.1. pdf Evaluation of Performance Based Concrete for Bridge Decks

WA-RD 845.1

Eric Ferluga Patrick Glassford June 2015

WSDOT Research Report

Bridges Evaluated


- A total of 28 bridges were evaluated
 - 15 constructed using the Performance Based Specification
 - 13 constructed using the Traditional WSDOT Specification
- Prestressed I-girders or Steel Plate girders selected for ability to inspect the underside of the deck between girders from the ground.

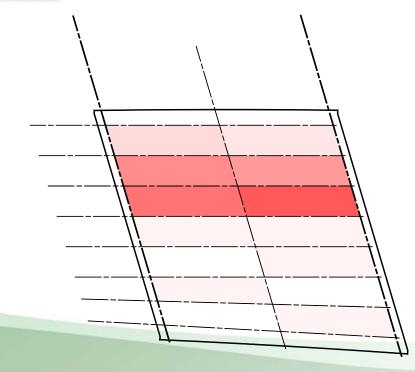
Evaluation Criteria

- Develop a "Crack Intensity" diagram for each bridge.
- Easily identified cracks (leaching or large enough to see from the ground) in the underside of the deck are counted
- Cracks are grouped into "bays" (bounded by girders and diaphragms)
- A crack intensity percentage is calculated for each bay = N_{cr}/N_{100}

 N_{cr} = counted number of cracks N_{100} = No. of cracks for 100% intensity

 100% crack intensity = a crack spaced every 2-feet

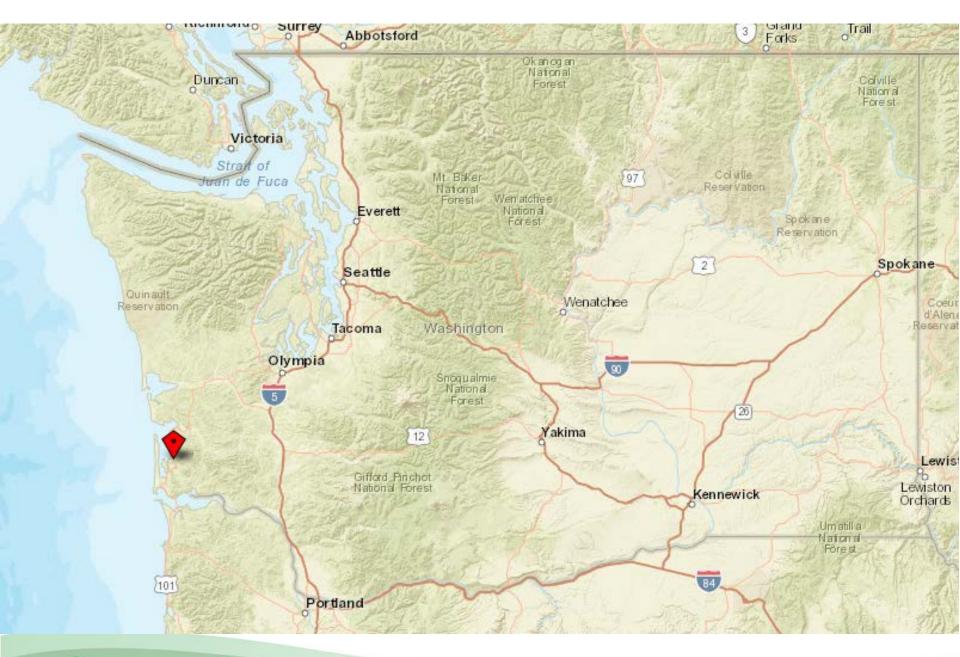
Sample Crack Intensity Diagram


Interstate 5 – Prairie Creek Brgs (near Olympia) Single Span prestress girders

Bridges Ranked by Average Crack Intensity

Br. No.	Bridge Name	Contract	Year	Perform.	Intensity	Cement.	Shrink.
303/4A	MANETTE BRIDGE	7926	2011	No	73%	735	
16/7S-E	S SPRAGUE RAMP	7594	2010	No	59%	735	
90/106N	GOLD CREEK WB	7852	2012	No	44%	735	
90/105.5S	GOLD CREEK ANIMAL CROSSING EB	7852	2010	No	40%	735	
529/25	EBEY SLOUGH	7948	2012	No	36%	735	
6/115	S FORK CHEHALIS R	7587	2009	No	32%	735	
90/105.5N	GOLD CREEK ANIMAL CROSSING WB	7852	2012	No	32%	735	
5/302E	PRAIRIE CREEK NB	7465	2009	No	18%	735	
2/651W-S	W-S RAMP OVER US 2/US 395	7610	2011	No	13%	735	

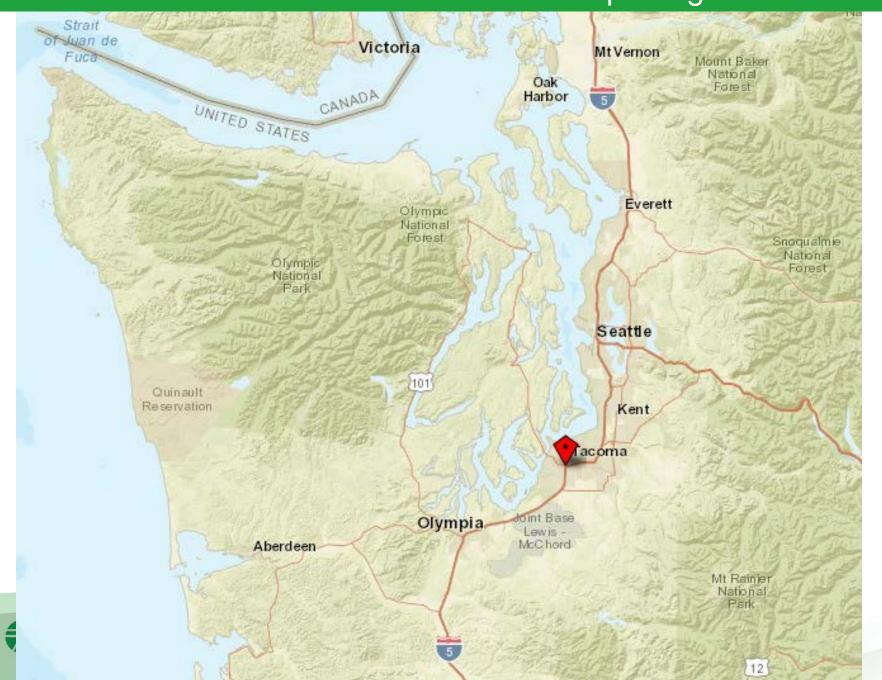
Traditional
Mix Design
Br Deck Concrete



Bridges Ranked by Average Crack Intensity

Br. No.	Bridge Name	Contract	Year	Perform.	Intensity	Cement.	Shrink.
5/434SCD	SBCD OVER SR 16 HOV & RAMPS	8189	2013	Yes	36%	565	0.028%
195/117	CHENEY SPOKANE RD OVER US 195	8378	2014	Yes	10%		
5/234W	I-5 OVER BLAKESLEE JCT RR	8272	2013	Yes	9%	580	0.030%
16/3W	SR 16 OVER HOV	8189	2014	Yes	9%	565	0.028%
9/134	PILCHUCK CREEK	8383	2014	Yes	7%	611	0.031%
105/4	NORTH RIVER	8345	2014	Yes	7%	610	0.018%
2/8.5N-W	N-W RAMP (BICKFORD AVE) OVER US 2	8286	2013	Yes	6%	610	0.032%
105/3	SMITH CREEK	8345	2013	Yes	6%	610	0.018%
6/8	WILLAPA RIVER	8464	2014	Yes	5%	610	0.018%
5/232NCD	SKOOKUMCHUCK RIVER NCD	8272	2013	Yes	2%	580	0.030%
5/232SCD	SKOOKUMCHUCK RIVER SCD	8272	2013	Yes	1%	580	0.030%
5/229	MELLON STREET COUPLET	8473	2014	Yes	< 1%	580	0.028%
395/441N-E	N-E RAMP OVER N-N RAMP	7610	2011	Yes	< 1%	565	0.034%
101/44	BONE RIVER	8292	2013	Yes	< 1%	610	0.018%
101/31	MIDDLE NEMAH RIVER	8344	2014	Yes	0%	610	0.018%

New Performance Spec For Br Deck Concrete



Summary

- 1. Fewer cracks in the performance mixes compared to the traditional Concrete Mix Design (Concrete Bridges).
- 2. A few of the traditional bridge decks performed similar to the performance based bridge decks.
- Only one of the 15 performance based concrete decks in the study had a high intensity of cracking (Steel Girder Bridge).

