

A Summary of NCHRP Project 18-13 and Some Other Stuff

Report Number NCHRP 749

Specifications and Protocols for Acceptance Tests of Fly Ash Used in Highway Concrete

> Larry Sutter Michigan Technological University

Acknowledgements

NCHRP 18-13 Specifications and Protocols for Acceptance Tests of Fly Ash Used in Highway Concrete

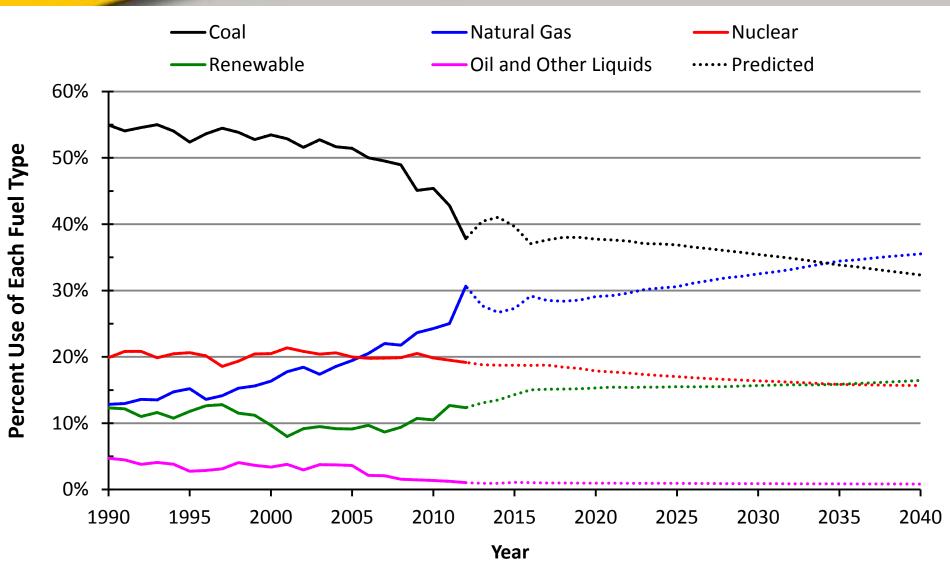
Larry Sutter¹, Doug Hooton², Scott Schlorholtz³ & Zeyad Ahmed¹, Melanie Keuber Watkins¹,

Dave Hand¹, Andre de Groot²

¹ Michigan Technological University
 ² University of Toronto
 ³ Iowa State University

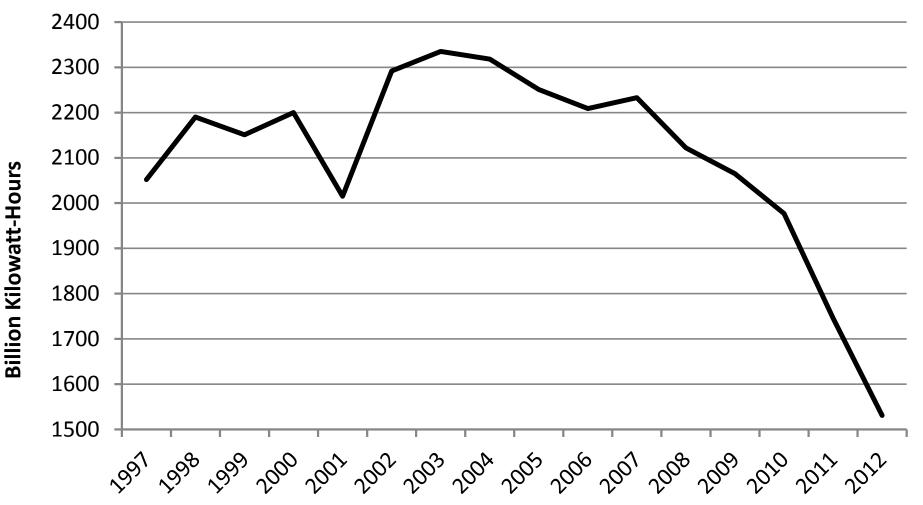
First...So What's Up With Fly Ash?

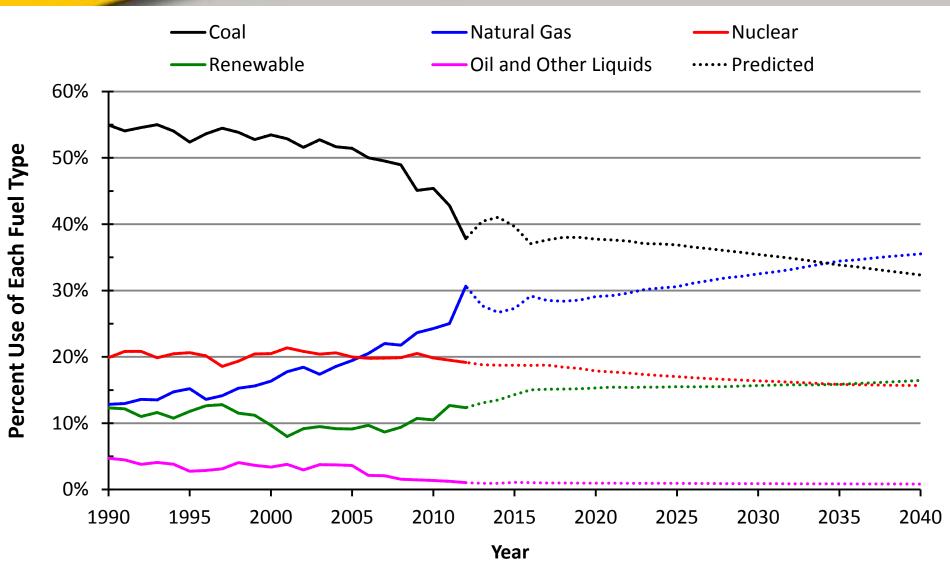
• Good question! Hard to predict but likely...



- Good question!
- Given current trends continuing domestic sources will cease to be available
 - Environmental Regulations
 - Public Perception of Coal Power
 - Cheap Natural Gas
- But when?

- Good question!
- Given current trends continuing domestic sources will cease to be available
 - Environmental Regulations
 - Public Perception of Coal Power
 - Cheap Natural Gas
- But when? Another Good question!


Source: U.S. Energy Information Administration



Source: U.S. Energy Information Administration

2015 Predicted Power Production - Coal

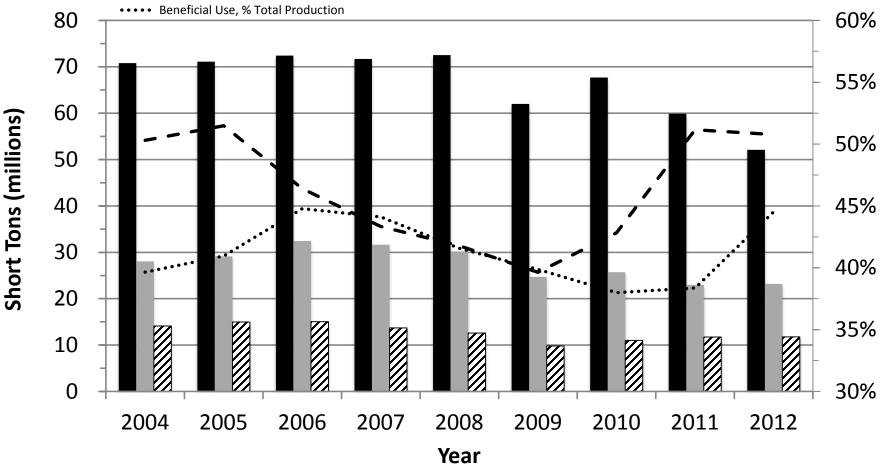
Source: U.S. Energy Information Administration

- Domestic fly ash reserves will be decreasing over the next 20 years and beyond
 - Likely imported supplies will become more available and likely at a higher cost
- Simultaneously High quality aggregates are also becoming a challenge to access in some markets
 - Anecdotally there appears to be more concern/occurrence of ASR

- What will replace fly ash as our *go-to* tool to mitigate ASR? Or just replace cement?
 - Slag Cement (*current solution*)
 - Natural Pozzolans (*emerging solution*)
 - Recovered fly ash (*emerging solution*)
 - Lower quality fly ash (*current solution*)

- Slag Cement
 - Currently used, excellent solution
 - Geographically limited
 - Good performance both as a cement replacement and as an ASR mitigator
 - Concerns about scaling lets start curing concrete again

- Natural Pozzolan
 - With decreased fly ash supplies, natural pozzolan reserves once overlooked are being considered – and they should be
 - Similar to Class F ash (sum of the oxides > 70%)
 - Examples: Calcined Clay or Shale, Diatomaceous Earth, Volcanic Materials such as Dacite, Rhyolite



- Natural Pozzolan
 - Unlike other emerging "alternative supplementary materials" that have no existing specification, natural pozzolans can be specified under ASTM C618 / AASHTO M 295
 - Transportation costs an issue in some cases needs to be weighed against rising costs for fly ash as supply decreases

- Lower Quality Ash
 - Pollution control measures will affect the ash
 - Powdered Activated Carbon
 - Ammonia
 - Competing with other markets for the material
 - Lower supply may have to consider an ash once rejected
 - Recovered ash

Total Production (short tons)

- Total Beneficial Use (short tons)
- Used in Concrete/Concrete Products/Grout (short tons)
- Beneficial Use in Concrete/Concrete Products/Grout, % Total Beneficial Use

Percent Beneficial Use

NCHRP 18-13

 <u>Objective</u> - recommend potential improvements to specifications and test protocols to determine the acceptability of fly ash for use in highway concrete

- <u>Characterization Study</u> evaluate existing specifications and classification methods for CFA
- <u>Strength Test Study</u> investigate test methods for characterizing the strength activity of CFA
- <u>Carbon Effects on Air Entrainment Study</u> develop test methods for characterizing the adsorption properties of residual carbon in CFA
- <u>ASR Mitigation Study</u> examine test methods to evaluate use of CFA to mitigate alkali-silica reaction in concrete

Characterization Study

- Gathered data on 100+ CFA sources
- Surveyed the SHAs to determine common sources used
- Selected 30 for comprehensive analysis
 - 17 Class F, 13 Class C
 - Selected sources from the 30 best suited for the other testing performed

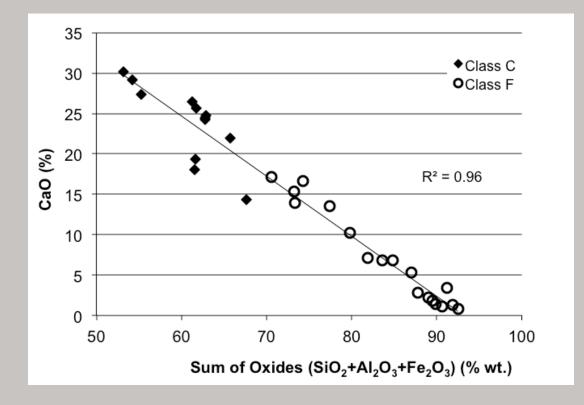
Summary of 30 Sources

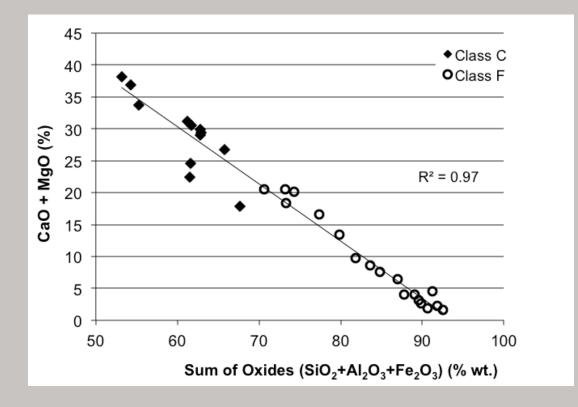
- Sum of SiO₂, Al₂O₃, and Fe₂O₃: 51.8 to 92.7%
- Calcium oxide (CaO): 0.9 to 30.6%
- Na₂O_e: 0.3 to 7.9%.
- LOI: 0.1 to 5.6%
- Fineness: 10 to 24.0%
- Strength Index (7-day test value): 75 to 112%
- Strength Index (28-day test value): 80 to 120%
- Water requirement: 93 to 100%
- Density: 2.1 to 2.8g per cubic-centimeter

Summary of 30 Sources

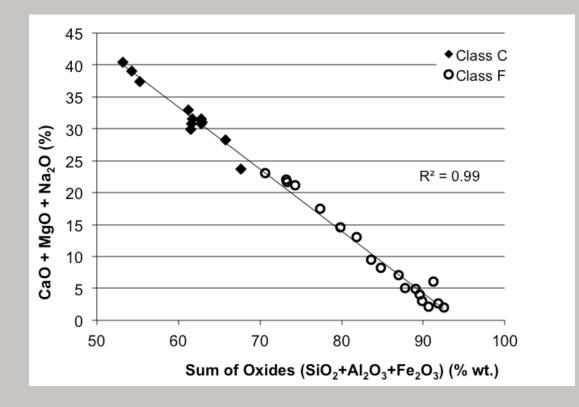
- Sum of SiO₂, Al₂O₃, and Fe₂O₃: 51.8 to 92.7%
- Calcium oxide (CaO): 0.9 to 30.6%
- Na₂O_e: 0.3 to 7.9%.
- LOI: 0.1 to 5.6%

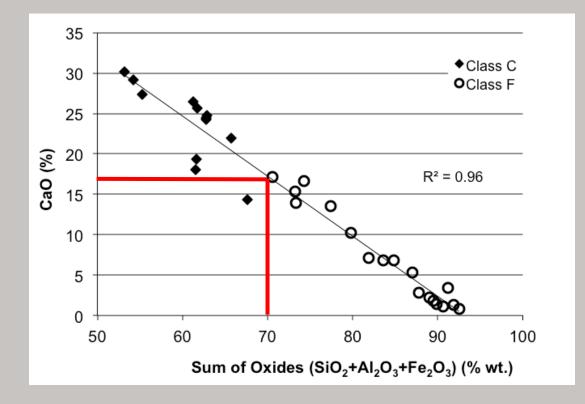
Also made blends to achieve higher LOI

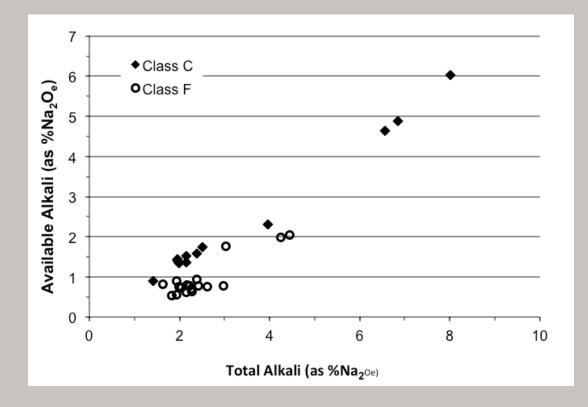

- Fineness: 10 to 24.0%
- Strength Index (7-day test value): 75 to 112%
- Strength Index (28-day test value): 80 to 120%
- Water requirement: 93 to 100%
- Density: 2.1 to 2.8g per cubic-centimeter

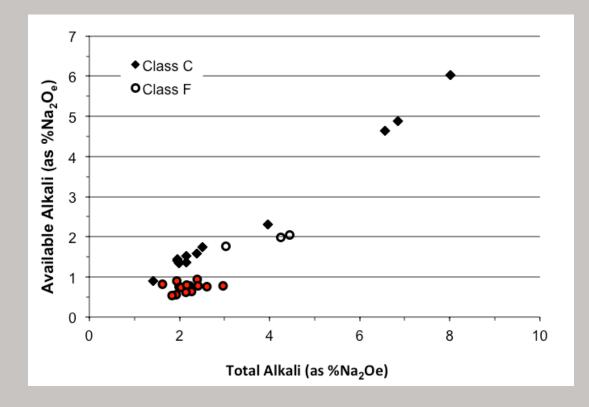

Characterization Study

- Characterized 30 sources using ASTM C311 methods
 - All AASHTO M 295 Required and Optional Chemical and Physical Properties
 - Pozzolanic Activity Index (PAI) using ASTM C311 methods
 - Qualitative XRD
- Quantitative XRD and TGA/DTA on 8 selected sources

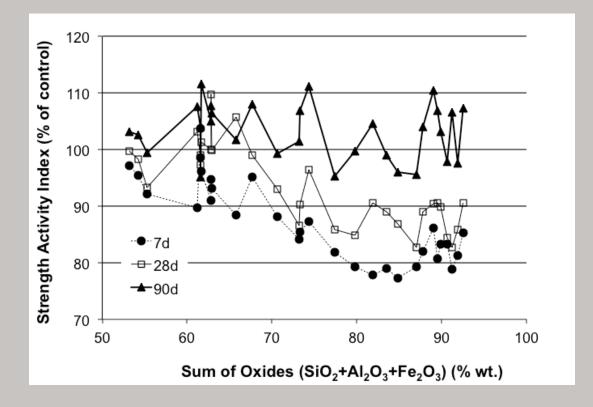








Available Alkali vs. Total Alkali



Available Alkali vs. Total Alkali

Strength Activity Index

- Strength Activity Index is questioned as it allows inert materials to pass
- Experiments performed with non-pozzolanic quartz filler

		100% Cement	20% Replac	ement	35% Replacement		
Cement Type	Age (days)	Strength (psi)	Strength (psi)	SAI	Strength (psi)	SAI	
PC-1	7	4554	3829	84	3075	68	
PC-2	7	4293	3408	79	2640	62	
PC-3	7	4090	3539	87	2886	71	
PC-1	28	5715	4815	84	3945	69	
PC-2	28	5526	4235	77	3655	66	
PC-3	28	5134	4351	85	3307	64	

- Strength Activity Index is questioned as it allows inert materials to pass
- Experiments performed with non-pozzolanic quartz filler

		100% Cement	20% Replace	ment	35% Replacement		
Cement Type	Age (days)	Strength (psi)	Strength (psi)	SAI	Strength (psi)	SAI	
PC-1	7	4554	3829	84	3075	68	
PC-2	7	4293	3408	79	2640	62	
PC-3	7	4090	3539	87	2886	71	
PC-1	28	5715	4815	84	3945	69	
PC-2	28	5526	4235	77	3655	66	
PC-3	28	5134	4351	85	3307	64	

- Strength Activity Index is questioned as it allows inert materials to pass
- Experiments performed with non-pozzolanic quartz filler

		100% Cement	20% Replac	ement	35% Replacement		
Cement Type	Age (days)	Strength (psi)	Strength (psi)	SAI	Strength (psi)	SAI	
PC-1	7	4554	3829	84	3075	68	
PC-2	7	4293	3408	79	2640	62	
PC-3	7	4090	3539	87	2886	71	
PC-1	28	5715	4815	84	3945	69	
PC-2	28	5526	4235	77	3655	66	
PC-3	28	5134	4351	85	3307	64	

- Evaluated the Keil Hydraulic Index
- Replace an equal percentage of the control sample cement with an inert filler
- Evaluated different fillers, replacement levels, and cements

Keil Hydraulic Index =
$$\frac{a-c}{b-c} \ge 100$$

a = strength of cement/fly ash mixture, replacement level X, time t
 b = strength of cement only mixture, time t
 c = strength of cement/inert filler mixture, replacement level X, time t

100% = a=b 0% = b=c >100% = a>b <100%, > 0% = a>c, a<b <0% = a<c

Keil Hydraulic Index

	KHI - 7 days			KHI - 28 days			KHI - 56 days		
ID-% Replace.	PC-1	<u>(%)</u> PC-2	PC-3	(%) PC-1 PC-2 PC-3			(%) PC-1 PC-2 PC-3		
FA-H-20	-31	4	-43	71	91	66	60	162	88
FA-M-20	-51	28	26	119	55	34	66	143	50
FA-O-20	10	-6	-24	7	73	39	57	84	26
FA-Q-20	53	44	26	135	102	109	120	185	121
FA-U-20	121	40	84	184	75	171	133	158	73
FA-X-20	115	101	80	96	30	72	127	126	96
FA-ZA-20	122	46	110	184	99	153	150	132	38
FA-ZC-20	203	83	41	138	119	130	140	193	106
FA-U-35	60	21	35	102	44	93	121	102	126
FA-X-35	89	74	110	118	68	94	78	114	82
FA-ZA-35	80	35	63	124	46	114	116	102	101
FA-ZC-35	140	45	39	83	75	82	102	99	96

100% = a=b 0% = b=c >100% = a>b <100%, > 0% = a>c, a<b <0% = a<c

Keil Hydraulic Index

	KHI - 7 days (%)			KHI - 28 days (%)			KHI - 56 days (%)		
ID-% Replace.	PC-1	PC-2	PC-3	PC-1	PC-2	PC-3	PC-1	PC-2	PC-3
FA-H-20	-31	4	-43	71	91	66	60	162	88
FA-M-20	7	28	26	119	55	34	66	143	50
FA-O-20	10	-6	-24	7	73	39	57	84	26
FA-Q-20	53	44	26	135	102	109	120	185	121
FA-U-20	121	40	84	184	75	171	133	158	73
FA-X-20	115	101	80	96	30	72	127	126	96
FA-ZA-20	122	46	110	184	99	153	150	132	38
FA-ZC-20	203	83	41	138	119	130	140	193	106
FA-U-35	60	21	35	102	44	93	121	102	126
FA-X-35	89	74	110	118	68	94	78	114	82
FA-ZA-35	80	35	63	124	46	114	116	102	101
FA-ZC-35	140	45	39	83	75	82	102	99	96

100% = a=b 0% = b=c >100% = a>b <100%, > 0% = a>c, a<b <0% = a<c

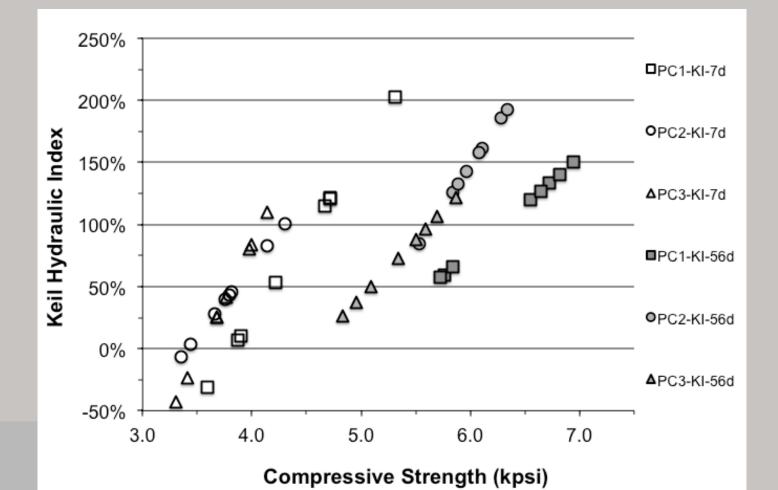
Keil Hydraulic Index

	KHI - 7 days			KHI - 28 days			KHI - 56 days		
ID-% Replace.	PC-1	<u>(%)</u> PC-2	PC-3	PC-1	(%) PC-2	PC-3	PC-1	<u>(%)</u> PC-2	PC-3
FA-H-20	-31	4	-43	71	91	66	60	162	88
FA-M-20	7	28	26	119	55	34	66	143	50
FA-O-20	10	-6	-24	7	73	39	57	84	26
FA-Q-20	53	44	26	135	102	109	120	185	121
FA-U-20	121	40	84	184	75	171	133	158	73
FA-X-20	115	101	80	96	30	72	127	126	96
FA-ZA-20	122	46	110	184	99	153	150	132	38
FA-ZC-20	203	83	41	138	119	130	140	193	106
FA-U-35	60	21	35	102	44	93	121	102	126
FA-X-35	89	74	110	118	68	94	78	114	82
FA-ZA-35	80	35	63	124	46	114	116	102	101
FA-ZC-35	140	45	39	83	75	82	102	99	96

100% = a=b 0% = b=c >100% = a>b <100%, > 0% = a>c, a<b <0% = a<c

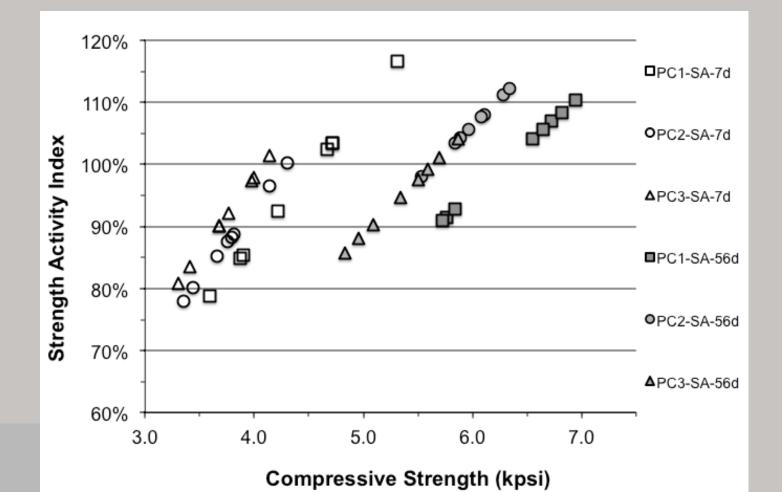
Keil Hydraulic Index

	KHI - 7 days			KHI - 28 days			KHI - 56 days		
ID-% Replace.	PC-1	<u>(%)</u> PC-2	PC-3	PC-1	(%) PC-2	PC-3	PC-1	<u>(%)</u> PC-2	PC-3
FA-H-20	-31	4	-43	71	91	66	60	162	88
FA-M-20	7	28	26	119	55	34	66	143	50
FA-O-20	10	-6	-24	7	73	39	57	84	26
FA-Q-20	53	44	26	135	102	109	120	185	121
FA-U-20	121	40	84	184	75	171	133	158	73
FA-X-20	115	101	80	96	30	72	127	126	96
FA-ZA-20	122	46	110	184	99	153	150	132	38
FA-ZC-20	203	83	41	138	119	130	140	193	106
FA-U-35	60	21	35	102	44	93	121	102	126
FA-X-35	89	74	110	118	68	94	78	114	82
FA-ZA-35	80	35	63	124	46	114	116	102	101
FA-ZC-35	140	45	39	83	75	82	102	99	96


100% = a=b 0% = b=c >100% = a>b <100%, > 0% = a>c, a<b <0% = a<c

Keil Hydraulic Index

	KHI - 7 days			KHI - 28 days			KHI - 56 days		
	(%)			(%)			(%)		
ID-% Replace.	PC-1	PC-2	PC-3	PC-1	PC-2	PC-3	PC-1	PC-2	PC-3
FA-H-20	-31	4	-43	71	91	66	60	162	88
FA-M-20	7	28	26	119	55	34	66	143	50
FA-O-20	10	-6	-24	7	73	39	57	84	26
FA-Q-20	53	44	26	135	102	109	120	185	121
FA-U-20	121	40	84	184	75	171	133	158	73
FA-X-20	115	101	80	96	30	72	127	126	96
FA-ZA-20	122	46	110	184	99	153	150	132	38
FA-ZC-20	203	83	41	138	119	130	140	193	106
FA-U-35	60	21	35	102	44	93	121	102	126
FA-X-35	89	74	110	118	68	94	78	114	82
FA-ZA-35	80	35	63	124	46	114	116	102	101
FA-ZC-35	140	45	39	83	75	82	102	99	96



Keil Hydraulic Index

Strength Activity Index

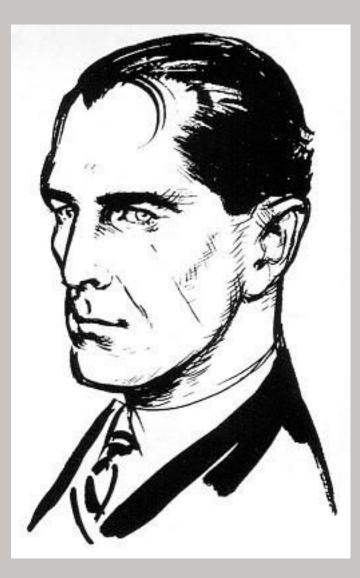
Strength Test Study

- Take Aways
 - The Keil Hydraulic Index provided a test that identified strength contribution separate from "filler" effects
 - The test was sensitive to the cement used
 - Other evaluations of the existing strength activity index showed increasing the specification limit to 85% eliminated inert materials
 - Need to change the time required for testing to accomdate some Class F ash

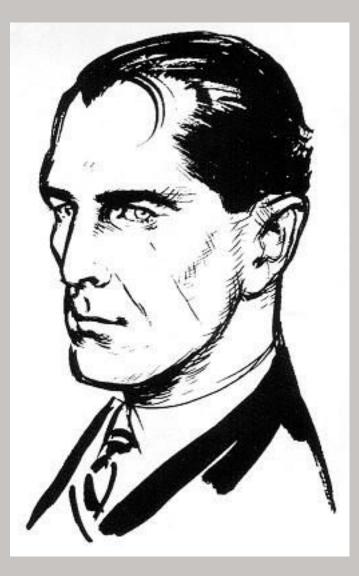
- Effect of Carbon on Air Entrainment
 - The LOI test is adequate for estimating the total carbon but does not adequately identify if the carbon will effect air entrainment
 - There is a need for a test to directly determine adsorption capacity
 - The foam index test is useful at determining the interaction of the fly ash with air entrainment admixtures but has not been standardized and is not part of AASHTO M 295 or ASTM C311

- Four tests evaluated:
 - Foam Drainage
 - Foam Index
 - Direct Adsorption Isotherm
 - Coal Fly Ash Iodine Number

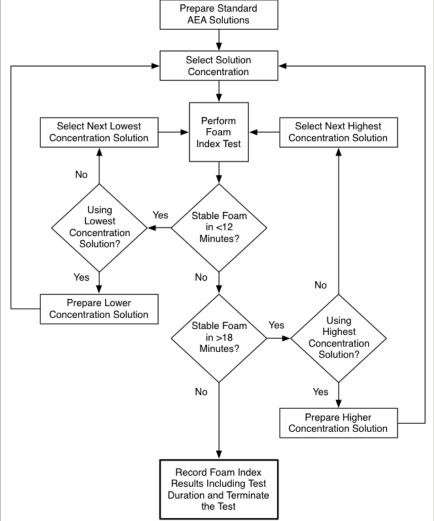
- Four tests evaluated:
 - Foam Drainage
 - Foam Index
 - Direct Adsorption Isotherm
 - Coal Fly Ash Iodine Number


Meligenceh

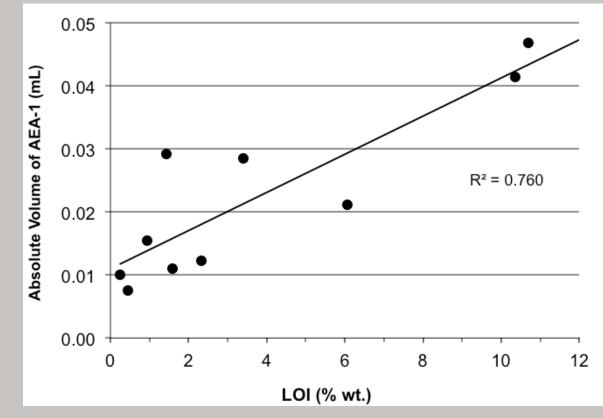
- Evaluated 16 published versions
- Adopted the methodology of Harris with some modifications
- Harris, N. J., K. C. Hover, K. J. Folliard, and M. T. Ley. The Use of the Foam Index Test to Predict AEA Dosage in Concrete Containing Fly Ash: Part I-Evaluation of the State of Practice. Journal of ASTM International, Vol. 5, No. 7, 2008.
- Harris, N. J., K. C. Hover, K. J. Folliard, and M. T. Ley. The Use of the Foam Index Test to Predict AEA Dosage in Concrete Containing Fly Ash: Part II-Development of a Standard Test Method: Apparatus and Procedure. Journal of ASTM International, Vol. 5, No. 7, 2008.
- Harris, N. J., K. C. Hover, K. J. Folliard, and M. T. Ley. The Use of the Foam Index Test to Predict AEA
 Dosage in Concrete Containing Fly Ash: Part III-Development of a Standard Test Method:
 Proportions of Materials. Journal of ASTM International, Vol. 5, No. 7, 2008.


Mehrenteh

- 2 g ash, 8 g cement
- 25 mL water
- Add AEA solution drop-wise
 - 5 % vol. AEA / Water solution
 - (0.02 mL/drop)


- 2 g ash, 8 g cement
- 25 mL water
- Add AEA solution drop-wise
 - 5 % vol. AEA / Water solution
 - (0.02 mL/drop)
- Shaken, not stirred

- 2 g ash, 8 g cement
- 25 mL water
- Add AEA solution drop-wise
 - 5 % vol. AEA / Water solution
 - (0.02 mL/drop)
- Shaken, not stirred
- Look for a stable foam
- Repeat...

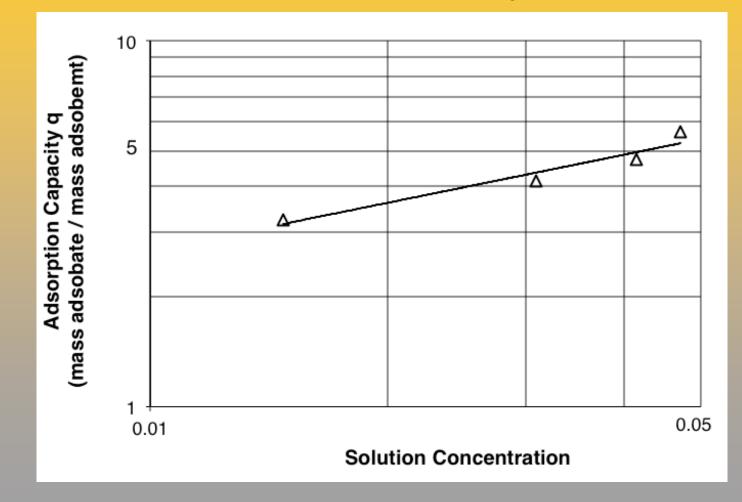


- Vary Solution Strength
 2, 6, 10, 15 %vol. AEA
- Achieve uniform contact time
 - 12 to 18 minutes
- Determine total AEA added
 - Foam Index

Mehrenteh

- Benefits
 - Cheap & Easy
- Issues
 - Not achieving equilibrium
 - Not quantitative
 - Subjective
 - Agitation?
 - What is a stable foam?

Adsorption Based Tests

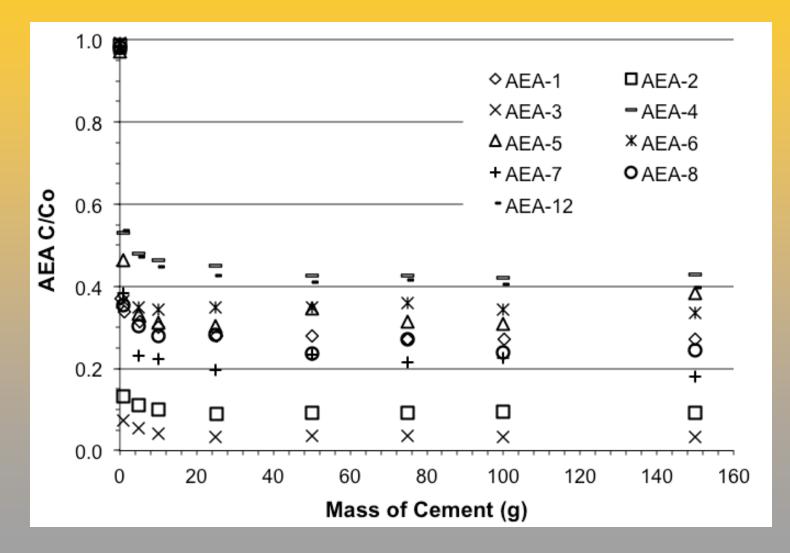

- Adsorption characterized by an adsorption isotherm
- Multiple adsorption models and isotherms
- Freundlich Isotherm

$$\mathbf{q} = \mathbf{K} \times \mathbf{C}^{1/n}$$

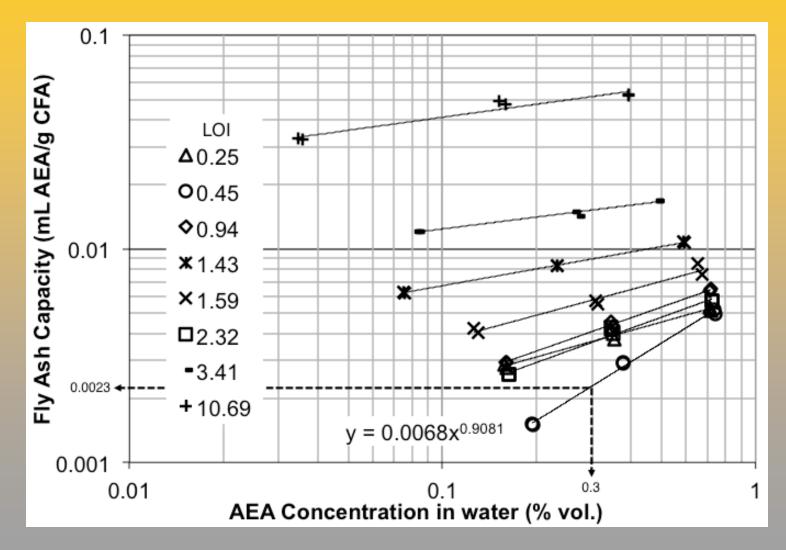
- -q = mass of adsorbate adsorbed per unit mass of adsorbent, mg/g
- $K = Freundlich isotherm capacity parameter, (mg/g) (L/mg)^{1/n}$
- C = Solution concentration, mg/L
- 1/n = Freundlich isotherm intensity parameter, dimensionless

Freundlich Isotherm

Slope = 1/n Intercept = log K

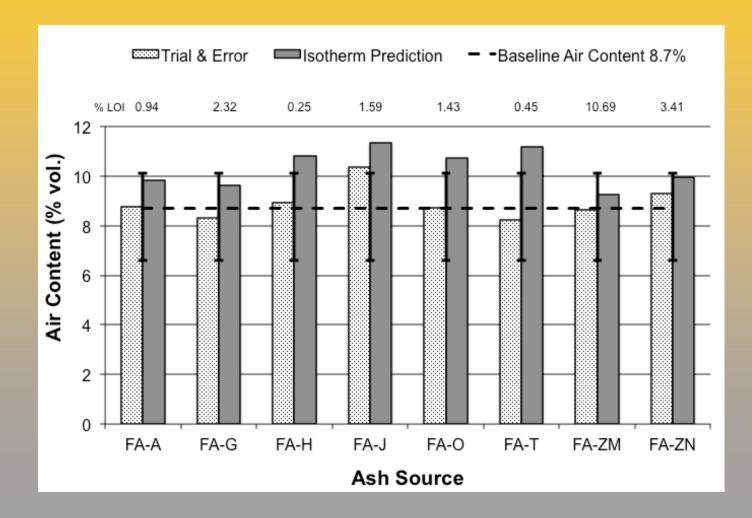


Designation: D3860 – 98 (Reapproved 2008)

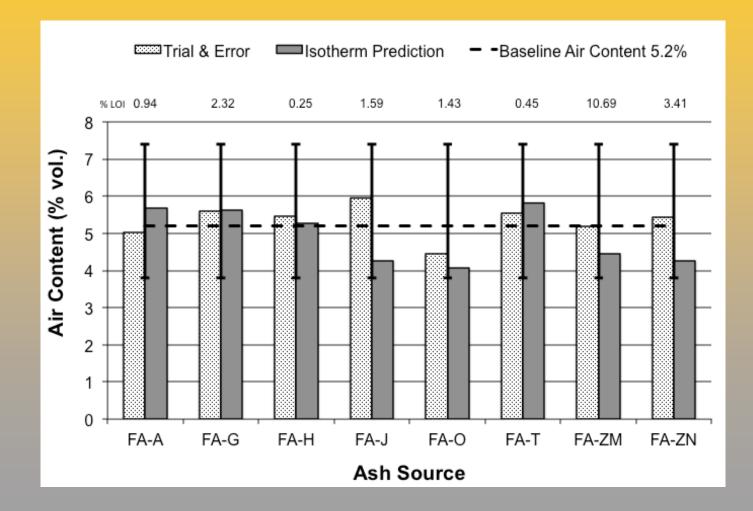

Standard Practice for Determination of Adsorptive Capacity of Activated Carbon by Aqueous Phase Isotherm Technique¹

- Based on existing ASTM test method with modifications:
 - Modified procedure for determining solution concentration
 - COD test versus spectroscopic methods
 - Needed to account for the contribution of cement

Direct Adsorption Isotherm Cement Effect



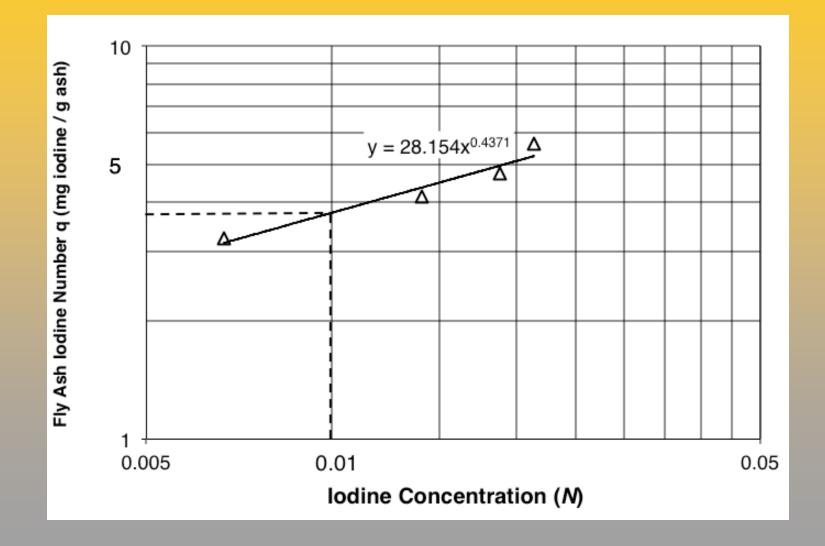
Direct Adsorption Isotherm determines AEA adsorption "capacity"

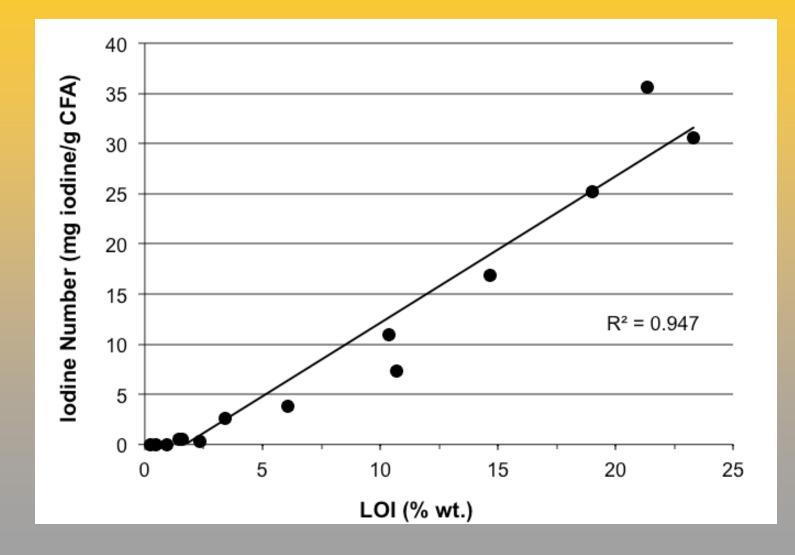


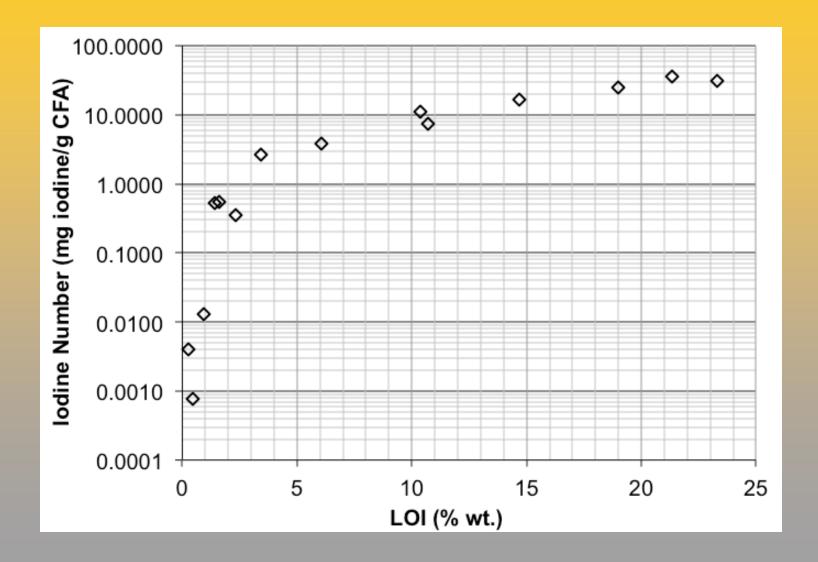
- Measures the adsorption capacity of the ash <u>AND</u> the adsorption capacity of the AEA
- Can be used to estimate AEA dosage
- Simple execution
 - Scales
 - Beakers & Stir Plate & Filtration
 - COD Kits & Colorimeter

Vinsol resin

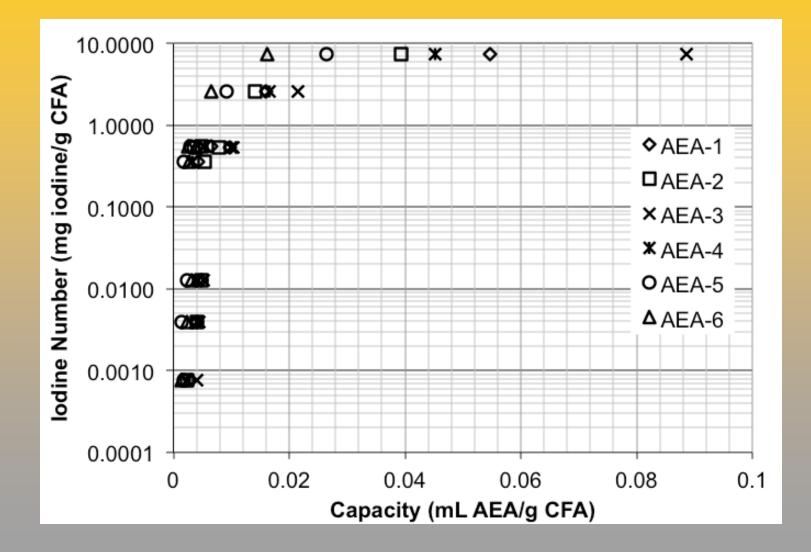
Alpha olephin sulfonate






Designation: D4607 – 94 (Reapproved 2006)

Standard Test Method for Determination of Iodine Number of Activated Carbon¹


- Based on existing ASTM test method with modifications:
 - HCI treatment to acidify the ash and remove SO₃
 - Initial solution strengths modified (0.025 N vs 0.1 N)
 - Target concentration for determining capacity differs from published test method (0.01 N vs 0.02)

Iodine Number vs. Capacity

- Measures the adsorption capacity of the ash
- Does not account for the adsorption capacity of the AEA
- Simple execution
 - Scales
 - Beakers & Stir Plate & Filtration
 - Titration

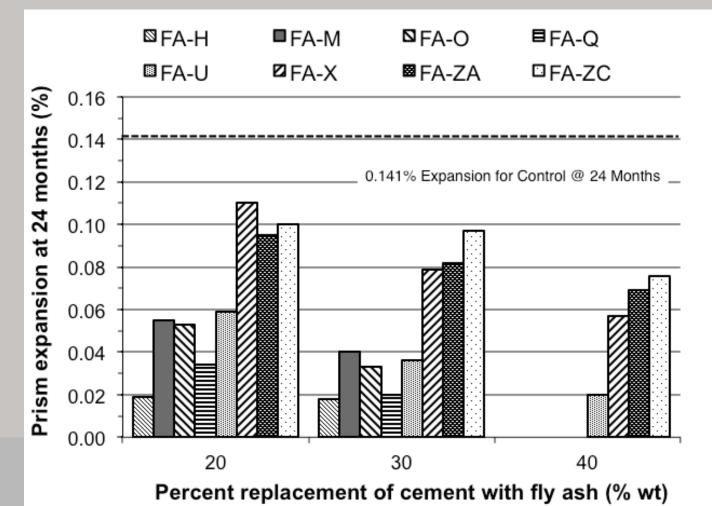
CHANGES SINCE REPORT

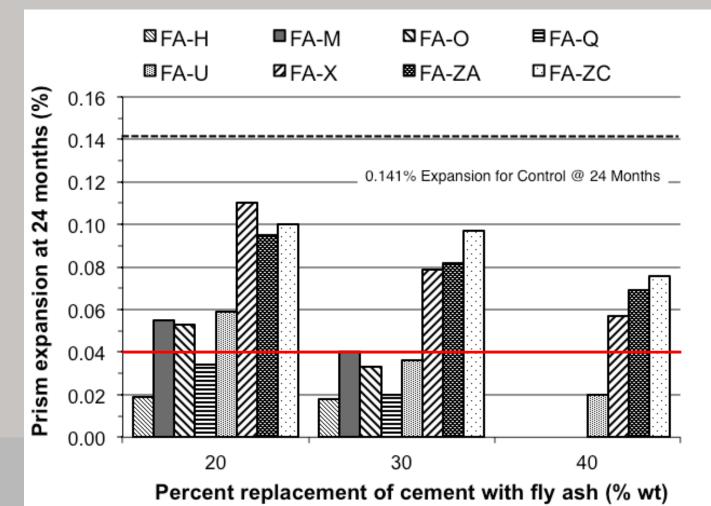
- Issues with filtration after acidification
 - Switched to nitric acid rather than hydrochloric
- Seeking faster version
 - Adopted single point isotherm based on ASTM D1510

Standard Test Method for Carbon Black—lodine Adsorption Number¹

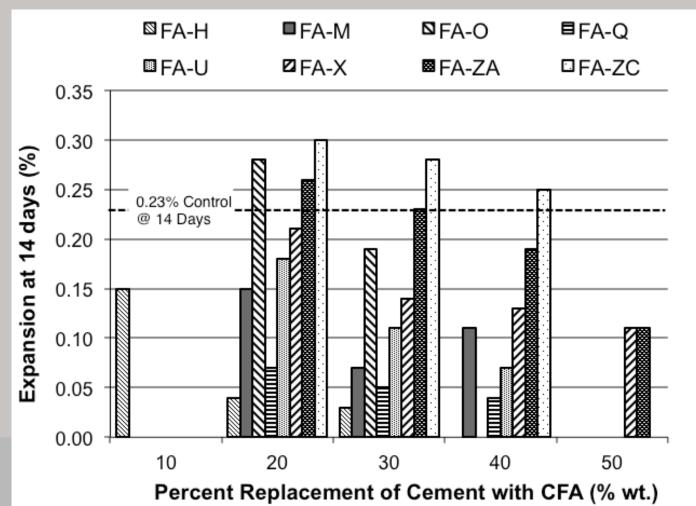
CHANGES SINCE REPORT

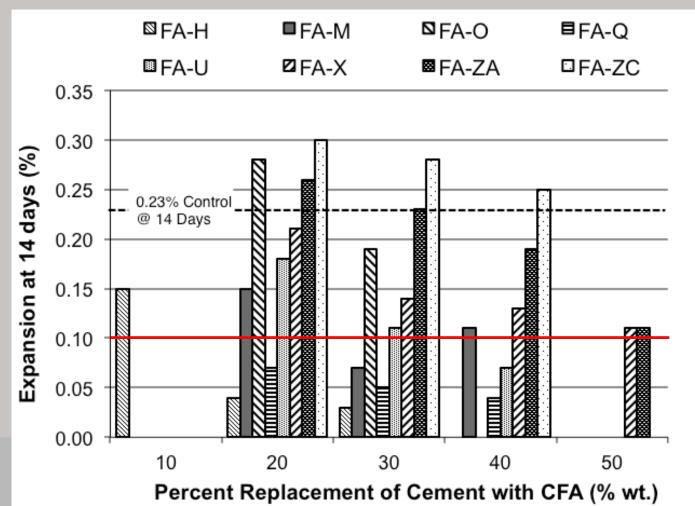
- Issues with filtration after acidification
 - Switched to nitric acid rather than hydrochloric
- Seeking faster version
 - Adopted single point isotherm based on ASTM D1510
- New method published in Wisconsin Highway Research Program Report WHRP 0092-12-04

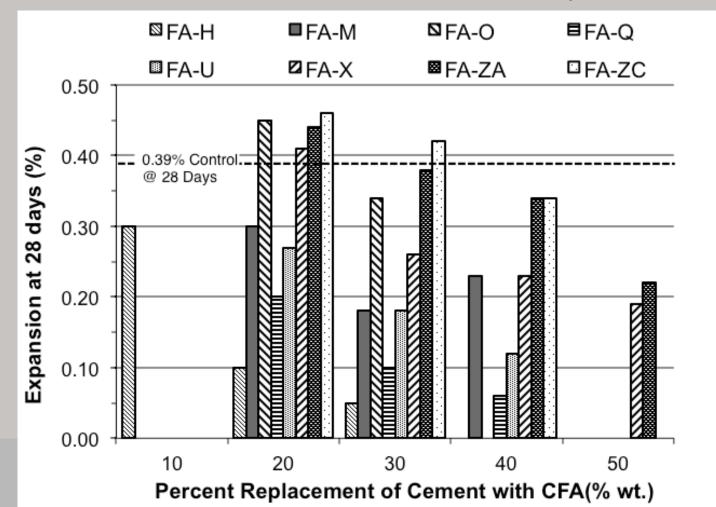

- Take Aways
 - Publish a standardized version of the foam index test that provides a uniform test time and mechanical agitation
 - Specify use of the the coal fly ash iodine number to evaluate ash adsorption potential
 - Specify use of the direct adsorption isotherm test to evaluate fly ash – air entrainer combinations


ASR Mitigation Study

- Evaluate protocols for applying existing test methods (ASTM C1567 and ASTM C1293)
- Evaluate the Alkali Leaching Test (Shehata and Thomas, 2006) and correlate with the results of ASTM C1293 and ASTM C1567
 - The alkali leaching test is used to determine the free alkalis available to be leached from a particular combination of cement and fly ash


ASTM C1293


ASTM C1293


ASTM C1567 - 14 days

ASTM C1567 - 14 days

ASTM C1567 - 28 days

ASTM C1567 - 28 days

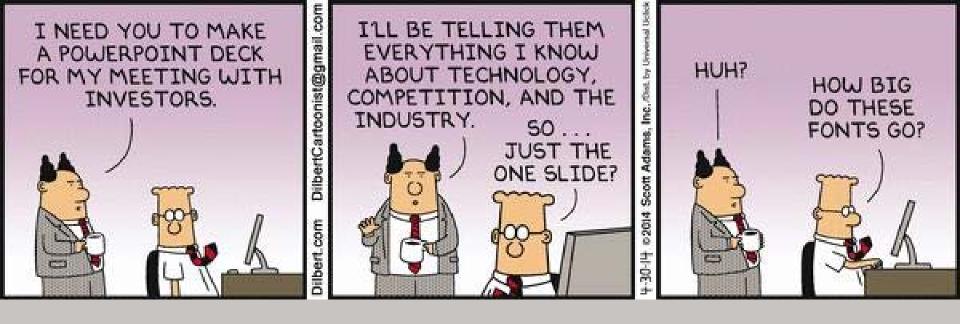
Mehrenteh

ASR Mitigation Study

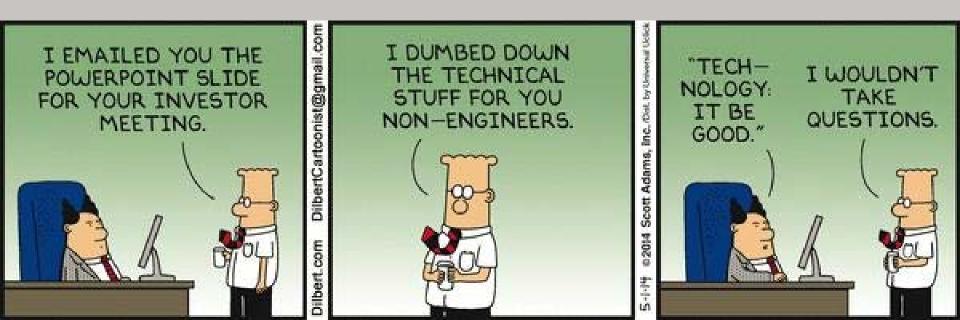
- Take Aways
 - Confirmed the AASHTO PP-65 limits of 0.1% expansion @ 14 days for ASTM C1567
 - Provided data showing a 28-day limit on ASTM C1567 does not correlate with ASTM C1293
 - Alkali Leaching Test no clear threshold of alkali release was identified that correlated with a 0.04% ASTM C1293 expansion

Recommended Changes to AASHTO M 295

- Add a maximum sum of the oxide limit (i.e., 70%) to the Class C classification
- Report CaO, MgO, Na₂O, and K₂O
- Adopt the use of the Iodine Number Test and the Direct Adsorption Isotherm Test under Optional Chemical Requirements


Recommended Changes to AASHTO M 295

- Raise the the Strength Activity Index to 85% of control BUT allow the material to be qualified at 7, 28, <u>OR</u> 56 days
- Delete the available alkali limit
- Delete use of ASTM C441 (Pyrex Glass Test) and adopt ASTM C1567 with a 14 day limit of 0.1%



Actions at ASTM

- Modifications to ASTM C311 LOI test and density test
- Adopt modified versions of the ASTM D3860, ASTM D1510, and the Foam Index Test
- Changes in fly ash definition
- Broad changes in fly ash characterization

Questions?

