Aggregate Proportioning and Gradation for Slip Formed Pavements

Daniel Cook, Nick Seader,
Ashkan Ghaeezadeh, Bruce Russell
Tyler Ley, P.E., Ph.D.

Acknowledgements

- Oklahoma Department of Transportation (ODOT)
- Oklahoma Transportation Center
- CP Tech Center
- FHWA hfl
- Trinity Construction
- Dolese Bros Company
- Martin- Marietta
- Arkhola Sand and Gravel
- Lafarge

Acknowledgements

- Kenny Seward
- Matt Romero
- Peter Taylor
- Maria Masten
- Todd Hansen
- Gary Fick
- Jim Shilstone
- Dick Gaynor

What is OG concrete all about?

- The goal of OG concrete is to increase the volume of aggregate and decrease the volume of paste
- paste = binder + water
- The paste is the most costly, least sustainable concrete ingredient and has the biggest impact on the durability

Why would you do this???

Reduce cost

Improve strength
Improve durability
Improve sustainability

Slip Formed Paver

What part of a paver is the most critical for concrete consolidation?

Box Test

- Add 9.5" of unconsolidated concrete to the box
- A 1" diameter stinger vibrator is inserted into the center of the box over a three count and then removed over a three count
- The edges of the box are then removed and inspected for honey combing or edge slumping

Box Test Ranking Scale

Edge Slumping

Bottom Edge Slumping

Top Edge Slumping

No Edge Slump

Edge Slump

Evaluating Mixtures with the Box Test

Box Test

- Low amounts of water reducer is good
- High amounts are bad

This technique lets us establish limits!

Validation

- Single Operator +/- 1.5 oz/cwt
- Multi Operator is +/- 2.5 oz/cwt
- Same box test performance was found if the WR was added up front or if added in small dosages
- If the sample did not pass the box test within one hour it was discarded
- The box test has compared well with field paving mixes

Summary of the Box Test

- The box test evaluates the response of a concrete mixture to vibration and the ability to hold an edge.
- We did this because no other test exists that can tell us this information.

How do you find your gradation?

- Shilstone
- 8-18 curves
- Power 45

Which one is right?

What do these tools tell you?

Is one better than the other?

Use of the Box Test to Evaluate Shilstone

- .45 w/cm
- 5 Sacks total cementitious
- 20% fly ash
- A single sand source
- 3 crushed limestones
 - Limestone A
 - Limestone B
 - Limestone C

Limestone A & Sand A

Limestone B & Sand A

Limestone C & Sand A

Does Distribution Really Matter?

Yes, Distribution Matters!

Use of the Box Test to Evaluate Gradations

- .45 w/cm
- 20% fly ash
- Three sand sources
- Used 5 coarse aggregates
 - Three limestones
 - Two river gravels
- All mixtures are 4.5 sack (423 lbs/cy)

Proportioning of Coarse to Intermediate

Proportioning of Coarse to Intermediate

Impacts of a Single Valley

Impacts of a Single Valley

Impacts of a Single Valley

Impacts of a Double Valley

Impacts of a Double Valley

Impacts of a Double Valley

Real Life Gradation Curve

Theoretical Bell Shape Curve

Proportioning of Sand

Proportioning of Sand

WARNING!!!

- We are about to sieve sand into <u>CRAZY</u> gradations and evaluate the subsequent performance
- We are not suggesting that you sieve your sand!
- We did this to better understand the critical characteristics of fine aggregate

Investigation of Coarse Sand

 We are going to remove all of the coarse sand from a mixture and then start to slowly add material on the #4, #8, #16, and #30 to see how the performance changes

 ACI 302.1R-04 – recommends the sum of #8 and #16 sieve sizes should not be below 13% to help with edge slumping

Images of the mixtures

Edge slumping

Impacts of #8

Impacts of #16

Investigation of Coarse Sand

- The #8 & #16 seems to cling to the coarse aggregate
- These smaller particles help provide more cohesion and internal structure to the mixture
- This is important for edge slumping and response to vibration

Investigation of Coarse Sand

Can you have too much #8 and #16?

Summary of Coarse Sand

- The #8, #16, and #30 contributes to the edge slumping and response to vibration of the mixture
- A minimum of 15% cumulative retained on the #8-#30 sieve sizes is suggested
- The #8 and #16 should be limited to 12% to minimize finishing issues.

Investigation of Fine Sand

- The gradation and volume of aggregates were held constant for sizes greater than #16
- The volume of fine sand (#30 to #200) was held constant
- The distribution was allowed to change

- Fine sand gradation can vary largely without impacting the workability.
- Mixtures with around 20% retained on the #30 sieve size can cause finishing issues.

Investigation of Fine Sand

 We are going to hold the gradation of #16 through 1" constant and allow the fine sand (#30 to #200) to vary

Using 20% #30 & 80% #50

Using 80% #30 & 20% #50

Using Only #50

Using 65% #50 & 35% #100

Validation with other Aggregates

- Same mixture design as previous
- Vary the sand to coarse and intermediate
- Used 3 different quarries
 - -Limestone C
 - -Limestone A
 - -River Gravel A
- Used River Sand A & B

- The distribution of fine sand can vary largely without effecting the workability.
- An aggregate volume between 24% to 34% is recommended for #30 #200.
- This range was similar for multiple gradations and aggregate sources
- More than 20% retained on the #30 sieve size created finishing issues.

A New Specification for Oklahoma

- We investigated:
 - 5 different coarse aggregates thoroughly
 - Spot checks on 13 different aggregates
 - 3 different sands
 - Over 300 different concrete mixtures
- You put your mixture design in a spreadsheet and it will evaluate if you are within the specification

ASTM D 4791 - 1/2" 2:1 scale

Application

- Five different concrete producers have tried this system and all seen improvements in their concrete
- 10 lane miles of CRCP for the FHWA hfl project have been placed with this system in Texas with 447 lbs of cementitious/CY.
- The contractor saw a 10% cost savings with a 25% reduction in the carbon footprint!!!!

Data from Maria Masten

Data from Maria Masten

Data from Maria Masten

Data from Todd Hansen

Field Concrete

- The contractors are producing mixtures in the field in Minnesota and Iowa that fit within the Tarantula and having good success with them
- They are doing this with trial and error and no knowledge of the Tarantula Curve
- The Tarantula Curve appears to be a good place to start with your mixtures

What about strength?

	7 Day Strength		28 Day Strength	
		Average	Min-Max	Average
Source	Min-Max (psi)	(psi)	(psi)	(psi)
Limestone A	4000-6320	5180	5330-8890	6940
Limestone B	4990-5270	5130	6220-7940	7450
River Rock	3990-4850	4440	5760-7050	6410

All mixtures had 4.5 sacks of total cementitious with 20% fly ash

- The Box Test proved to be a useful test method to evaluate mixtures for concrete pavements
- This test has allowed us great insight into coarse and fine aggregate proportioning
- The Tarantula curve and fine aggregate limits have been used to successfully produce field concrete mixtures

- Optimized graded concrete mixtures produced in Minnesota and Iowa show good agreement with the specified limits
- It was used in Texas with great contractor savings
- Rough estimates show that this could save Oklahoma over \$4 million/year and enough electricity to power 400 homes per year while also producing pavements with improved durability and sustainability

Durability • The mixtures showed satisfactory freeze thaw and shrinkage durability

Gap Graded vs Combined Graded

Gap Graded vs Combined Graded

Gap Graded vs Combined Graded The mixture was

A New Specification for Oklahoma

- Within spec 470 lbs of cementitious w/20% fly ash replacement max w/cm = 0.45
- Out of spec 564 lbs of cementitious w/20% fly ash replacement max w/cm = 0.45