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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringProper compaction is key to achieve stable foundation 
layers for pavements
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringIn practice, specifications for earthwork are fixated on 
Proctor compaction test results for QC/QA.

Relationship between moisture content and density of geomaterial 
(from White et al. 2010)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringAn important consideration for compacted materials is 
the shear strength/stiffness of the material.

Seed et al.1960
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Moisture control limits can 
be set based on desired 
volume change 
characteristics as a 
function of overburden 
stresses.

Holtz (1948)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringCompaction energy and moisture content change 
density about 10% and strength/stiffness 500%.

(White et al. 2005)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringIsobars overlain on M-D plots can show changes in 
strength and stiffness. 

White et al. (2009)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringLaboratory gyratory compaction tests can provide 
moisture-density-shear strength-energy relationships. 
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Moisture Content (%)
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Random point testing can be a hit and miss 
proposition

Intelligent Compaction 101 Video – Youtube
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White, D.J., Vennapusa, P. (2013). “Missouri Hwy 141 – Embankment, Box Culvert, and MSE Wall Fill – August 2010.” Intelligent 
Compaction Brief, Technology Transfer for Intelligent Compaction Consortium (TTICC), Transportation Pooled Fund Study Number 
TPF-5(233), Iowa State University, June, Ames, IA.
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental Engineering A long habit of not thinking a thing wrong, gives it a 
superficial appearance of being right, and raises at first 
a formidable outcry in defense of custom.

(Paine, 1776).
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QC/QA nuclear testing shows lack of 
reproducibility.

Source: White, D.J., (2013). “Earthwork Performance Specification Integrating Proof Mapping 
and Alternative In-situ Testing.” A report from SHRP R07. 
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental Engineering MoDOT is looking for a technology that both MoDOT 
and the construction industry can utilize during QC/QA 
that can provide information with more uniform coverage 
of compaction data than traditional methods with an 
outcome being the elimination of nuclear density 
testing.

(Stone, 2011)

18
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Keeping track of lift thickness and pass coverage is 
almost impossible.

Compacted Lift Thickness (feet)
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QC/QA nuclear testing showed lack of 
reproducibility and did not capture the wide range in 
stiffness values measured.

Source: White, D.J., Becker, P., Vennapusa, P., 
Dunn, M., and White, C. (2013). “Soil Stiffness 
Assessment of Stabilized Pavement Foundations.” 
Transportation Research Record, Journal of 
Transportation Research Board, 2235, 99-109. 
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Acknowledgment of problems and mistakes is 
difficult. 

 they are an essential part of experimentation and a 
prerequisite for innovation. So don’t worry. 

(Harvard Business Review, 2014)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringCompaction monitoring technologies can help identify 
problem areas in real time

Intelligent Compaction 101 Video – Youtube
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Civil, Construction & Environmental EngineeringCompaction monitoring technologies can help identify 
problem areas in real time

Intelligent Compaction 101 Video – Youtube
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringCompaction monitoring technologies can help identify 
problem areas in real time

Intelligent Compaction 101 Video – Youtube
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringIC measurements correlate better with elastic modulus, 
than with compaction layer dry unit weight and CBR 

I-29 PF2 Project – White et al. (2014)
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EFWD-K3 (MPa)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringStabilization can improve long-term support conditions of 

pavement foundation layers 



Center for Earthworks 
Engineering Research

16 different test sections were designed and 
constructed at Central Iowa Expo Site in Boone, Iowa. 

YOUTUBE Videos: 
https://www.youtube.com/watch?v=qnq4fmRs6so
https://www.youtube.com/watch?v=Ks8zhj_L8Ys

https://www.youtube.com/watch?v=qnq4fmRs6so
https://www.youtube.com/watch?v=Ks8zhj_L8Ys
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16 different test sections were designed and 
constructed at Central Iowa Expo Site in Boone, Iowa. 

EXISTING GRANULAR BASE
(Well Graded Gravel)

SUBGRADE
(Gray to Dark Brown 
Lean Clay trace Organics)

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

BIAXIAL 
GEOGRID

Existing Profile

CHIPSEAL
COATING 8”

12”

MODIFIED SUBBASE
(Iowa DOT Gradation)
SUBGRADE
(1A, B, C) 10%, 15%, 20% Fly Ash Stabilization
(1D) 10% Cement
(1E) Control

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

(1) Fly ash/Cement Treated Subgrade

6”

12”

(2) Use of Existing Granular Base

6”

MODIFIED SUBBASE
(Iowa DOT Gradation)

REPLACE W/ EXISTING 
GRANULAR BASE

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

6”

8”

6”

(3) Cement Treated Existing Base

MODIFIED SUBBASE
(Iowa DOT Gradation)

(3A) 5% CEMENT - EX. GRAN. BASE
(3B) 5% CEMENT + 0.4% PP Fibers -
EX. GRAN. BASE

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

6”

8”

6”

(4) Geosynthetic Reinforcement

MODIFIED SUBBASE
(Iowa DOT Gradation)

EXISTING 
SUBGRADE

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

(4A) TX & (4B) BX Geogrids, 
(4C0 Woven & (4D) Non-Woven

Geotextiles

(5) Geocell Reinforced Base

MODIFIED SUBBASE w/ 6” (5A) and 4” (5B)
GEOCELLS (Iowa DOT Gradation)

EXISTING SUBGRADE

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

(6) High Energy Impact Compaction

MODIFIED SUBBASE
(Iowa DOT Gradation)

EXISTING SUBGRADE +
EXISTING GRANULAR BASE

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

Displaced 
Surface 

after HEIC

(7) Granular Base Mixed w/ Subgrade

MODIFIED SUBBASE
(Iowa DOT Gradation)

EXISTING GRANULAR BASE +
SUBGRADE (Compacted with CS683)

Dark Brown to Dark Gray
Lean Clay (Topsoil?)

6”

8”

6”

6”

8”

6”

6”

8”

6”

6”

8”

6”

Note: Excavate 4” of subgrade Note: Excavate 12” of subgrade.

Note: Excavate 12” of subgrade. Note: Excavate 4” of subgrade Note: Excavate 4” of subgrade.

Note: No excavation. Note: Excavate 8” of subgrade.



Center for Earthworks 
Engineering Research

Caterpillar CS74 CMV (a = 0.97 mm, f = 28 Hz)April 2013
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IC data showed higher values during spring-thaw than after 
construction in areas with PC and PC with fibers

Source: White et al. (2014)
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Cement treated base material (with dense-graded 
aggregate) showed significant spatial variability in modulus
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US422 Pavement 
Rehabilitation using 
Injected Polyurethane 
Foam
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Penn DOT used FWD testing to determine locations 
for foam stabilization
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Foam was injected under pressure and pavement 
lifting was monitored to reduce faulting at cracks

Mechanical 
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Dowel bar 
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Testing in patching areas showed variable stiffness 
conditions due to non-uniform foam penetration
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Foam stabilized subbase showed high shear strength 
but lower modulus than unstabilized subbase
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Material Measurement Average Std. Dev. COV (%)

OGS
ELWD-Z2, MPa 106 21 20

CBROGS, % 20 4 20
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Field
Measurements
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FWD testing after treatment showed statistically significant 
improvement near cracks, but not at joints or mid-panel
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IRI testing indicated reduced ride quality after foam 
stabilization but maintained at the same level for 3 yrs

Year
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringStiffness or Modulus is a key design parameter in 

pavement design

Modulus of subgrade 
reaction k-value is 
determined from 30-in 
diameter plate load test
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental Engineering

CBR (%)

1 10 100

St
at

ic
 M

od
ul

us
 o

f S
ub

gr
ad

e 
R

ea
ct

io
n,

 S
ta

tic
 k

FW
D
 o

r k
PL

T (
pc

i)

0

100

200

300

400

500

600

700

800

LTTP Database - Static kFWD-Corrected (Darter et a. 1995)
LTTP Database - kPLT (Darter et al. 1995)

US Army Corps/ERDC Database - kPLT (Barker and Alexander, 2012)
Lab CBR versus Field kPLT (Thornton 1983)

Upper
Bound
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et al. 
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k = 20 CBR
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LL < 50; k = 30.387CBR0.7897

Packard (1973)
k = 53.438CBR0.5719

Empirical relationships published show significant 
variability in k estimated from FWD vs. PLT vs. CBR 

Results from 
• LTPP Studies (Darter et al. 

1995),
• Army Corps of Engineers 

(Barker and Alexander 2012),
• Thornton (1983)
• TR640 Study on Low Volume 

PCC Pavements (White and 
Vennapusa 2014)

Source: White and Vennapusa (2014)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringCBR of a minimum 3 in. thick  “weak” zone in top 18 in. 
subgrade relates strongly with k value from FWD

Source: White and Vennapusa (2014)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringComparison between k determined from PLT, FWD, 
DCP, and lab Mr testing revealed significant variability
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NOTE: kcomp values are determined by accounting for subbase layer thickness and 
moduli values following ACPA and AASHTO design guide procedures
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringFoundation layer stiffness has a large influence on stiffness 
measurements over asphalt layer.

HMA non-wearing 
course layer map
a = 0.6 mm,           
f = 3000 vpm

Class 5 aggregate 
subbase layer map, 
a = 0.6 mm,           
f = 2500 vpm

Reflection of 
hard spots on
the HMA layer

Reflection of 
hard spots on
the HMA layer

Reflection of 
soft spots on
the HMA layer
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y = 2.45 ln(x) + 2.3
R2 = 0.69

    
  

    
  

Source: White, D.J., Vennapusa, P. (2008). Accelerated Implementation of Intelligent 
Compaction Monitoring Technology for Embankment Subgrade Soils, Aggregate Base, and 
Asphalt Pavement Materials TPF-5(128) – Mn/DOT HMA IC Demonstration, Report submitted 
to The Transtec Group, FHWA, June. 
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringIC data from multiple embankment layers show that it 
takes multiple lifts to bridge “weak” subgrade layers 

US30 Embankment Construction Project, Colo, Iowa - White et al. (2010)

East

East

East
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“Weak” subgrade soils have a large influence on composite 
stiffness measurement on surface.

Gravel layer – 14% influence
Subgrade layer – 86% influence

on FWD composite stiffness

Source: Vennapusa, P., White D.J., Miller, D.K. (2013). Western Iowa Missouri River Flooding -- Geo-Infrastructure Damage 
Assessment, Repair and Mitigation Strategies, TR-638 Final Report, Iowa Department of Transportation, Ames, Iowa.
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental Engineering

Pavement Age (years)
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TR640 Data:
PCI = -1.6377 (Age) + 105.22
R2 = 0.72, RMSE = 11.994

TR640 Data:
PCI = 5.553 - 1.615 (Age) - 2.009 (CBRSG-Weak) 
         - 0.2245 (COV of CBRSG-Weak) +205.907 (Cd) + 0.004 (AADT) 
         - 1.055 (COV of kFWD-Corr) - 2.395 (Thickness) + a; 
Adj. R2 = 0.959, RMSE = 4.430
(a = +6.891 if subbase is present, and -6.891 if subbase is not present)

TR640 Data - Low volume roads
White et al. (2008) - Interstate Highways

Source: White and Vennapusa (2014)

Age vs. PCI
RMSE = 5.1 for Interstates
RMSE = 12.0 for LVRs
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Pavement Age (years)
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TR640 Data:
PCI = -1.6377 (Age) + 105.22
R2 = 0.72, RMSE = 11.994

TR640 Data:
PCI = 5.553 - 1.615 (Age) - 2.009 (CBRSG-Weak) 
         - 0.2245 (COV of CBRSG-Weak) +205.907 (Cd) + 0.004 (AADT) 
         - 1.055 (COV of kFWD-Corr) - 2.395 (Thickness) + a; 
Adj. R2 = 0.959, RMSE = 4.430
(a = +6.891 if subbase is present, and -6.891 if subbase is not present)

TR640 Data - Low volume roads
White et al. (2008) - Interstate Highways Statistical analysis 

revealed the following 
are key for improved 
PCI:

1. AGE
2. Drainage
3. Variability of stiffness
4. CBR of Subgrade
4. Traffic
5. Presence of Subbase
6. Pavement Thickness

Source: White and Vennapusa (2014)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringLab Mr testing standards require averaging last five cycles which 
may not be always representative 

Source: Li, J., White, D.J., Stephenson, R.W. (2014). “Accuracy of resilient modulus test results and sources of error.” 
Geotechnical Testing Journal, ASTM (in review)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringLab Mr testing standards require averaging last five cycles which 
may not be always representative 

Source: Li, J., White, D.J., Stephenson, R.W. (2014). “Accuracy of resilient modulus test results and sources of error.” 
Geotechnical Testing Journal, ASTM (in review)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringAASHTO T307 protocol recommends sampling @ 200Hz which 
does not adequately capture the peak stresses – 500 Hz or 
greater is recommended. 

Source: Li, J., White, D.J., Stephenson, R.W. (2014). “Accuracy of resilient modulus test results and sources of error.” 
Geotechnical Testing Journal, ASTM (in review)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringMr testing on composite samples showed that the “weak” 
subgrade layer governs the composite sample modulus

Mean Bulk Stress, B (kPa)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringMr testing on composite samples showed that the “weak” 
subgrade layer governs the composite sample modulus

Mean Bulk Stress, B (kPa)
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringFWD testing on precast panels 

showed improvements in terms 
of FWD deflection and LTE
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringCalTrans Construction 
Observations Report indicated 
hairline cracks developed  on 
precast panels several months 
after placement. 

Report indicated strong correlation 
between contractor’s grading 
practices (stringline approach) on 
the bedding layer and the 
incidence of cracking. 
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Proof rolling can be substituted with stiffness-based 
assessment.
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SHRP2R07 published options to implement performance-
based specifications for pavement foundations



Center for Earthworks 
Engineering Research

IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringDrainage is an important component of pavement design and is critical 
in achieving good pavement performance. 

A New In-Situ Testing Device (APT) was developed to overcome 
problems with rapid field testing
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringAPT has a wide measurement range
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringAPT testing was performed in dense-grid pattern to identify 
segregated areas
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IOWA STATE UNIVERSITY
Civil, Construction & Environmental EngineeringSpatial variability in 
fines content showed 
a strong correlation 
with field permeability
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Cement-treated bases can be contaminated with fines 
due to construction activities

Cement Treated Base
SR22, Blairsville, PA
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APT measurements on asphalt-treated base
Asphalt Treated Base
SR22, Blairsville, PA

Avg. K = 13,040 ft/day
COV = 42%

Subbase
(OLS-PA)

Asphalt Treated 
BaseTest LocationsSubbase

(OLS-PA)

Asphalt
Treated
Base

SR22
East Bound

SR22
East Bound

Test Locations

Longitudinal Direction (m)

0 2 4 6 8 10 12 14

Tr
an

sv
er

se
 D

ire
ct

io
n 

(m
)

0

2

4

6

8

10

12

14

0.1
0.3
1
3
10

   

 
 

 
 

   

 
 

 
 

Ksat (cm/s)

  
    

    
    
     

 

  
   
   

  

    
   

    
     

 

  
   
   

  

  

Leveling Subbase
(OLS-PA)
Test Locations

SR 22
East Bound

Asphalt Treated Base
(ATB)
Test Locations

White et al. (2010)



Center for Earthworks 
Engineering Research

COV of permeability is higher for virgin and recycled 
aggregate materials than treated aggregate materials

Material
Crushed 
Limestone 
(OLS-63)

Steel slag     
(OS-MI)

Cement treated 
AASHTO 

# 57 base (CTB)

Asphalt 
treated 
AASHTO#57 
base (ATB) Area A Area B

Saturated Hydraulic Conductivity, Ksat Statistics

Number of measurements, N 89 120 49 23 99

Mean, µ (ft/day) 5,380 13,890 19,840 560 13,040

Standard Deviation, σ (ft/day) 4,800 16,720 8,780 560 5,380

Coefficient of Variation, COV (%) 91 119 45 101 42

White et al. (2010)
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Subgrade support 
conditions and 
trafficking affect 
particle breakdown

Geogrid, 5th St.  

No. Stab., 8th St.

PC Stab. Subgrade, 11th St. 

White and Vennapusa (2014)
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Representative CBR profiles from the three test sections

White and Vennapusa (2014)
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CHP Tests can be used to measure permeability of 
materials under pavements

White and Vennapusa (2014)
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CHP Tests under existing pavements showed 
evidence of erosion at the interface
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CHP tests results on a wide range of support 
conditions (Low Volume Pavements)
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Use of geocomposite active drainage systems can 
improve subsurface drainage
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improve subsurface drainage
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Use of geocomposite active drainage systems can 
improve subsurface drainage
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Laboratory horizontal permeability test device was fabricated 
at ISU to simulate field drainage conditions
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Lab HPT tests confirm field results of improved drainage with 
geocomposite drainage layers
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Placing geocomposite drainage layer at PCC/Subbase layer 
interface for improved drainage
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2 to 4 orders of magnitude higher Ksat can be achieved with 
geocomposite without reducing stiffness
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Frost-heave and thaw-weakening susceptibility is important to 
assess seasonal variations in support conditions
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Pavement and foundation layers are subjected to 
significant number of freeze-thaw cycles

Freeze-thaw cycles 
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materials,” Geotechnical Testing Journal, ASTM (in review) 
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Poor drainage beneath pavement causes joint 
deterioration due to trapped water

KSAT < 1 ft/day

Source:

Urbandale, IA Project
Report – PF2
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Frost susceptibility ratings vary for similar materials

Material
USCS 

Classification

2nd Frost-Heave
Susceptibility 

(mm/day)

Thaw-Weakening 
Susceptibility 

(% CBR)

IA I-29 lean clay subgrade CL High 12.4 Very High 0.7

PA US-22 sandy lean clay subgrade CL Medium 4.3 High 3.0

WI US-10 sandy lean clay subgrade CL Medium 5.5 Medium 7.2

IA I-29 silt with sand subgrade ML High 11.0 Very High 1.4

Loess ML Very High 19.1 Very High 0.5

IA US-30 clayey sand subgrade SC Medium 7.8 High 2.7

MI I-96 clayey sand subgrade SC High 13.1 Medium 5.8

160th Street poorly graded sand with silt and gravel SP-SM High 11.5 Negligible 28.9

160th Street well graded sand with silt and gravel SW-SM High 13.4 Very Low 15.0

Manatts concrete sand subbase SP Negligible 0.9 Medium 8.1

IA US-30 RPCC subbase GM Medium 6.1 Negligible 33.3

IA US-30 RPCC/RAP subbase GP-GM Medium 5.4 Negligible 37.6

IA US-30 limestone subbase GP-GM Medium 6.4 Negligible 33.2

Martin Marietta crushed limestone subbase GP-GM Medium 8.0 Negligible 47.5

Manatts RAP subbase GW Very Low 1.8 Medium 8.7

Manatts RPCC/RAP subbase GW Very Low 1.9 Negligible 33.2
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The frost-heave rate of recycled PCC granular material 
showed as much heave rate as cohesive materials.
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Stabilized loess showed expected and unexpected 
frost-heave and thaw-weakening results.

Stabilizer 
Type

Stabilizer 
Content (%)

Water
Content (%)

2nd Frost-Heave
Susceptibility 

(mm/day)

Thaw-Weakening 
Susceptibility 

(% CBR)
Cement 9 13 Negligible 0 Negligible >100

Cement 9 20 Negligible 0 Negligible >100

Cement 11 20 Negligible 0 Negligible >100

Cement 13 22 Negligible 0 Negligible >100

Fly Ash 10 10 High 15.8 High 3.0

Fly Ash 10 19 Very High 22.2 Medium 5.0

Fly Ash 15 19 High 14.1 Medium 7.1

Fly Ash 20 22 High 11.0 Negligible 25.5

Untreated — 17.5 Very High 19.1 Very High 0.5
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After thaw CBR decreases as heave rate increases

Heave rate (mm/day)
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Source: Zhang, Y., Johnson, A., White, D.J. (2014). “Laboratory freeze-thaw assessment of stabilized pavement foundation 
materials,” Geotechnical Testing Journal, ASTM (in review) 
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CBR values comparison before and after 
thawing
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11th St. North 10% PC Stabilized Subgrade
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6th St. South 5% PC+MF-PP Stabilized Recycled 
SubbaseCBR (%)
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5th St. North Triaxial Geogrid
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Thank you!
• Please check out our pavement foundation manual 

coming in 2015.

www.ceer.iastate.edu

http://www.ceer.iastate.edu/
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