Thermal Stresses in Mass concrete addressing Owners requirements and simplification

Mass challenges

Create a simple specification

Item Change

We modified the pay adjustment formula for under strength concrete to one that is not as harsh. Example, Cost - \$650/CY.

% Rdctn	Old Pay adj	New Pay
2.5 %	\$121.57	\$ 17.62
5.0 %	\$145.03	\$ 39.60
7.5 %	\$167.88	\$ 65.95
10.0 %	\$190.13	\$96.66

Risks vs. Reward

Mass Concrete - Poorly charted territory from an application basis

Temperature cracks

Stress cracked column

Stress cracking due to Early form removal or temperature

• Run Temperature animation and Cracking probability.

Column removal

Thermal Shock

DEF Damage

DEF Damage

Alkali Silica Reaction (ASR)

Controlling ASR

How do we control the deterioration mechanisms created by heat?

- Restrict placement temperature to 75°F
- Limit differential to 35°F max
- Monitor
- Create a detailed temperature control plan

 USE CONCRETEWORKS to develop a low
 heat concrete design and develop a Thermal
 Control Plan.

Why develop plan?

- To address form stripping and reduce thermal shock cracking. Maintain temperature control methods for 4 days or to the peak of the adiabatic heat gain curve which ever is greater.
- To implement plan if high temperature is exceeded (160°) minimizing interruptions to construction.
- To implement plan if 35°F differential is not maintained minimizing interruptions to construction.

Create a low heat concrete design.

To use ACI 211 Mod which is in the ConcreteWorks program the inputs needed are as follows:

- Slump
- Air
- Strength
- Mixture deviation
- Environment
- ASTM aggregate
 gradation

What do you do to improve a mix design for mass concrete with heat problems?

- Sub. CI F fly ash for cement
- Sub. GGBFS for cement
- Lower the cement content
- Lower placement temp.
- Change aggr types
- Improve aggr gradation

Show cementitious quantities with a poor design

46 gallons of water/yd8.75 sacks of cement

Show cementitious quantity with improved design parameters

Reduced 20 gallons of water/yd

Cement content 4.88 sacks, reduced cement 3.85 sacks

Increase rock content by 520 Lbs

Evaluate - Thermal Control plan before placement. How?

Thermal Control Plan - Results

Max Temp. Difference • Max. Temp. • ASR/DEF Compliance

Cracking Risk

Cracking Risk output

Orange = High

Contractors and suppliers can optimize

CERTIFIED DWI DEFENSE NATIONAL COLLEGE OF DUI DEFENSE Drink, drive - go to jail. Another Government lie. Responsible drinking is LEGAL. Copyright 2006 817-831-0000

Mimi Coffey

THE COFFEY FIRM

Principal Office Located in Fort Worth, TX *Mimi Coffey is Certified in DWI Defense by The National College of DUI Defense

