

Ongoing IDOT Research & An FHWA Process Review

James Krstulovich, P.E.

Concrete Research Engineer

Bureau of Materials & Physical Research

Bridge Deck Cracking in Illinois

- Transverse cracks at regular intervals at both positive and negative moment regions commonly observed
- Longitudinal cracking occurs after extensive transverse cracking

Steel Girder

Crack

Types K & G Expansive Cementitious Material

- Shrinkage compensating (expansive) supplement
- Expands in volume at early age
- If restrained: develops compressive stress that may compensate tensile stresses from shrinkage

Characterizing Materials

Total heat released during hydration similar to ordinary portland cement paste.

Characterizing Materials

Restrained Expansion (ASTM C 878)

Unrestrained Deformation (ASTM C 1698)

Unrestrained Expansion of Paste

Measurements starting at 6 hrs

Measurements starting at Final Set

Optimizing Mixes

MF: Mortar Factor CF: Cement Factor

~25% reduction in drying shrinkage by optimizing mix

Large-Scale Study

- Focus: Cracks due to temperature and shrinkage
- Cracking due to restraint provided by superstructure
- Cracking (tensile) stress depends on many other factors such as
 - Girder Stiffness
 - Deck Thickness
 - Slab Reinforcement (including shear studs)
 - Support Conditions
 - Skew Angle
 - Type of Bearings
 - Form Types
 - Others

Large-Scale Simulation

Simulate bridge superstructure

 Concrete surface, rebar, and girders instrumented to measure strains, temperatures and deformations

 Data obtained will be used to calibrate FEM model for a full scale 3-span bridge

Large-Scale Simulation

- Dimensions: 7' x 10', 8" deck thickness, 6' girder spacing
- Longitudinal reinforcement fixed to rigid steel C-channels to simulate continuity of longitudinal reinforcement
- Shear studs included

Small-Scale & Large-Scale Study

Linking Small-Scale Testing with Large-Scale Simulation

- Correlating shrinkage reduction from small-scale testing with...
- tensile strain reduction in reinforcing bar from large-scale simulation:

i.e., maximum strain registered by longitudinal bar was 75 $\mu\epsilon$ compared to 500 $\mu\epsilon$ expansion in small-scale testing

The external restraint (C-channels) and higher percentage of reinforcement in large-scale deck simulation created a much stiffer system which resulted in lower strain values in reinforcing bar compared to that in small-scale concrete prisms.

Linking Small-Scale Testing with Large-Scale Simulation

- How does compressive stress developed by expansion mitigate tensile stress due to shrinkage?
- How much does external restraint impact such mitigation?
- Does it matter if creep reduces the developed compressive stress?
 - Elastic modulus plays important role in governing deformation under load (or creep).

Type K Bridge Deck Poured 2012

Balling in Mix

Balling in Mix - Blisters

Also Evaluating SRAs

SRA has been found to be effective reducing shrinkage; effectiveness depending on dosage.

IDOT Bridge Deck Construction: An FHWA Process Review

FHWA Process Review

- Conducted in 2012
- Observed 27 bridge decks pours
- Consisted of BMPR, BBS, Construction, Districts, FHWA, and Industry
- Resulted in 14 Findings,
 Recommendations

Findings, Recommendations

- 1. Fogging
- 2. Curing
- 3. Exterior beam rotation
- 4. Too much hand finishing
- 5. Use of vibratory screeds
- 6. Ambient temperature restrictions
- 7. Concrete testing methods
- 8. Alternative curing materials
- 9. Bridge deck grinding
- 10. Cleaning leaking mortar off the beams
- 11. Concrete delivery rates
- 12. Plastic chair supports for deck reinforcement
- 13. Location of finishing machine rails
- 14. Training course for bridge deck construction

Item 1: Fogging

- Foggers now banned from finishing machine
 - Their use was ineffectual or counterproductive
- Handheld foggers to be used until curing mats are placed
 - Minimum pressure 2,500 psi like a backyard power washer

Evaporation Rate

- Not a result of the process review
- Instead of referring to the evaporation chart to determine if fogging is needed, the following equation was added:

$$E = (T_c^{2.5} - rT_a^{2.5})(1 + 0.4V)x10^{-6} (English)$$

$$E = 5[(T_c + 18)^{2.5} - r(T_a + 18)^{2.5}](V + 4)x10^{-6} (Metric)$$

Where:

 $E = \text{Evaporation Rate, lb/ft}^2/\text{h (kg/sq m/h)}$

 T_c = Concrete Temperature, °F (°C)

 T_a = Air Temperature, °F (°C)

r = Relative Humidity in percent/100

V = Wind Velocity, mph (km/h)

Item 2: Curing

Long delays in placing cotton mats

 Common excuse: trying to avoid marring the deck

Revise language to de-emphasize marring

Item 3: Exterior Beam Rotation

Illinois Center for Transportation study

Item 4: Hand Finishing

 21 of 27 decks had hand finishing over all or the majority of the deck – undesirable practice

• Goal: Let the finishing machine do the work

 Limit to problems found during straightedge testing and for those surfaces not reached by the finishing machine

Item 5: Vibratory Screeds

- Now allow vibratory screed in lieu of finishing machine
- Allowed on deck pours up to 24' wide
- Vibratory screeding followed by finishing with handoperated <u>longitudinal floats having blades not less than</u> 10 ft long and 6 in. wide

Item 6: Ambient Temperature

- Currently no ambient temperature restrictions for deck pours
- Concrete temperature of 90F at discharge
 - Ice or water chillers
 - Nighttime pours
 - Water/shade stockpiles

Ambient Temperature Debate

- 85F air temperature requirement may or may not force nighttime deck pours
 - Contractors may have trouble bidding
 - Low bidders maybe assumed daytime pours
 - District may not want nighttime pours
 - Several day wait for cooler weather

Questions

James Krstulovich, P.E.
Concrete Research Engineer
James.Krstulovich@illinois.gov

Dan Tobias, Ph.D., S.E., P.E.
Acting Engineer of Concrete & Soils
Daniel.Tobias@illinois.gov

Matt Mueller, P.E.
Engineer of Tests

Matthew.Mueller@illinois.gov