2014 Nebraska Blended Cements Specification

Spring 2014
Jacksonville, Florida

Presented by:

Lieska Halsey Research Engineer

HISTORY

Designs PCC Pavement to Last 50 Years

HISTORY

Began to notice pavements
less than 10 years old
displaying severe
deterioration

the the

Concrete never deteriorates from a single cause usually there are multiple causes.

Bryant Maher

Short Term Action:

Eliminate the known causes of premature deterioration

Long Term Plan:

A comprehensive look at
Concrete Pavement Design, Concrete
Mix Design, Specifications,
and QA/QC activities

Pavement Design

- Provide a Solid Sub-Base
- Provide Good Drainage
- Widen Slabs to Reduce Deterioration at Concrete to Asphalt Joint
- Provide Load Transfer at Joints
- Reduce Tire Noise

Mix Design

- Mitigate ASR
- Pursue Supplementary Cementitious Material (SCM) combinations that are effective against ASR and improve permeability
- Achieve Good Air System
- Curing
- · Optimization of Aggregate Gradations

QA/QC Procedures

Plant Certification Program

- Portable and Stationary Plant Inspection
- Concrete Plant Technician
 - Since August 2013, Contractor is responsible for batching the concrete.

Technician Certification Program

- ACI Training
- Pavement Smoothness Program
- Portland Cement Sampler
- Maturity Method Field Monitoring

Material Verification Procedures

- Random sampling for blended/interground cement
- QA of Interground and Blended Cements (oxides ratio) for ASR verification
- Random sampling for aggregates

Current Challenges

Challenges Today Future Changes

Incompatible admixtures combinations

Final Adequate Air System

Nebraska's Initiatives Interground/Blended Cement Specifications

Reasons for Change

- EPA Regulations (Impact on the Future Fly Ash Sources Class F Ash)
- NDOR's Evaluation of Statewide Aggregate Reactivity

Nebraska's Evaluation of Statewide Aggregate Reactivity

Republican River Represent Aggregate Pit Locations tested

Republican River Indianola's Aggregate Non-Approved Aggregate

Description Aggregate Type Location

Platte River

Grand Island

Dry Pit

Kimball

Republican River

of Agg. Reactivity

Very Highly

Reactive

Highly

Replacement Level of SCM

(Table 6-

AASHTO

PP 65-10)

Mim.

Level of SCM Mitigate ASR 15

Type I/II Cement

Low Alkalinity

Mim.

Replacement

Class F

Nebraska's Spec

Since Late 2004

IP with 25%

Moderate 20 Reactive Highly 25 Reactive

35

25

20

25

20

35

25

Fairbury

Elkhorn River

Norfolk

Platte River

Linoma

20

15

25

20

Very Highly

Reactive

Highly

Reactive

New Interground/Blended Cement Approval Process

For Concrete Applications:

- NDOR will no longer maintain Supplemental Cementitious Materials (SCM's) on the Approved Product List (APL) for the following products:
 - Fly Ash (C&F), Calcined Clays (N-Pozzolan), and Slag
- NDOR will allow the use of ASTM C 1697-Standard Specification for Blended Supplementary Cementitious Materials
- NDOR will allow the use IP and IT cement in accordance with ASTM C595

Supplier Approval Process for Blended SCM's

Supplier when using ASTM C 1697

- The supplier will report Chemical Composition for the final SCM's
 - NDOR verify the chemical composition of the final blend
 - The Final SCM's blend shall be reported by the classification of SCM's final Blended SCM_b

For Example :
A binary mixture SCM_b-65F/35C
65% class F and 35% C fly ash

Supplier Acceptance Requirements Interground/Blended Cement

- The supplier shall conform to ASTM C 595
 - NDOR verify the chemical composition of the final Interground/Blended Cement
 - NDOR will pre-establish a (CaO/SiO₂) ratio
- Supplier would provide Alkali Silica Reaction (ASR) testing
 - (ASTM C 1567 less than 0.10% @ 28 days)
 - Platte River and Norfolk aggregate
 - NDOR verify ASTM C 1567
- Total Cement Replacement with SCM's
 - 20% min
 - 40% max

Project Level Quality Assurance

- Prior to any concrete production, the cement type and aggregate source shall be approved.
 - Platte River Aggregate
 - Elkhorn River Aggregate
- Cement shall be Sampled and Tested
 - 750 tons
 - NDOR will verify pre-established
 - (oxide ratio)

Nebraska will start an extensive evaluation during 2014 construction season

Performing Forensic Testing

- In-house Evaluation toward the Proposed test by AASTHO M 295.
 - Foam Index
 - Fly Ash Iodine Number
 - Air Entraining Admixture Absorption

All These Test are to evaluate the influence of Carbon on Air Entraining

Nebraska in 2014 will continue the In-House Research

AASHTO Provisional Standard:

Potential Alkali Reactivity of Aggregates and Effectiveness of ASR Mitigation Measures (Miniature Concrete Prism (MCPT)

INDUSTRY