Future of AAR Testing Miniature Concrete Prism Test (AASHTO TP 111)

Prasad Rangaraju Clemson University, SC

National Concrete Consortium Meeting Jacksonville, FL April 24, 2014

Existing AAR Test Methods in ASTM

<u>ASR</u>

- ASTM C 227 Mortar Bar Test
- ASTM C 289 Quick Chemical Test
- ASTM C 295 Petrographic Examination
- ASTM C 1260 Acc. Mortar Bar Test
- ASTM C 1293 Conc. Prism Test (ASR)
 ACR
- ASTM C 295 Petrographic Examination
- ASTM C 586 Rock Cylinder Test (ACR)
- ASTM C 1105 Conc. Prism Test (ACR)

Existing Test Methods for ASR Mitigation in ASTM

ASTM C 441 – ASR Mitigation
ASTM C 1567 – ASR Mitigation
ASTM C 1293 – ASR Mitigation
CRD-C-662 – ASR Mitigation (Lithium)

Deficiencies of Existing Methods

ASTM C1260 (Accelerated Mortar Bar Test)

- Severity of Test Conditions
 - o High Test Temperature
 - o Crushing/Sieving
- Inability to Identify Certain Slowly Reactive Aggregates
- Excessive False Positives
- Deleterious False Negatives
- Inability to Evaluate Job Mixtures

ASTM C1293 (Concrete Prism Test)

- Length of the Test Methods
- Leaching of Alkalis
- Inability to Evaluate Job Mixtures

Influence of Aggregate Size on Expansion in ASTM C1260

Variability in ASTM C 1260 Test Results (MN Sources)

Concerns with CPT & Accelerated CPT

- Length of the test method (1 year or 2 years)
- Significant alkali leaching (~ 35-40%)
 observed in test specimens and its impact on expansion is questioned?
- The results are sensitive to the choice of non-reactive aggregate used in the concrete ?

Miniature Concrete Prism Test

- This method is based on the research conducted for FHWA to develop a rapid and a reliable test method to evaluate:
 - ASR Potential of Aggregates
 - Effectiveness of ASR Mitigation Measures
 - ASR Potential in Job Concrete Mixtures
- MCPT is developed based on modifications to CPT and AMBT methods. The improvements over the standard test methods are :
 - No significant aggregate crushing is involved
 - o No alkali leaching
 - Short test duration of 56 days (8 Weeks) for majority of aggregates
 - For slow reacting aggregates 84 days (12 weeks)
 - o Can detect both ASR and ACR
 - Can evaluate both aggregate and SCMs
 - Potential to evaluate job concrete mixtures

MCPT Method

- o Concrete Prisms
- o Coarse Agg. Size Range
- Coarse Agg. Vol Fraction (Dry-Rod)
- o Coarse Agg. Grading Requirement

Sieve Size, mm		Mass, %
Passing	Retained	
12.5	9.5	57.5
9.5	4.75	42.5

- o Cement Content
- o Cement Alkali Content
- o Alkali Boost, (Total Alkali Content)
- o Water-to-cement ratio (fixed)
- o Storage Environment*
- o Storage Temperature

= 2 in. x 2 in. x 11.25 in. = No. 4 – 1/2 in. = 0.65

= 708 lb/yd³ (420 kg/m³)

= 0.45

= 1N NaOH Solution (Soak)

 $= 60^{\circ}C$

MCPT Measurements

- o 1st Day
- Subsequent Storage
- o Length Change Measurement

= Curing in 60 °C in Water = 1N NaOH @ 60°C

- = 1, 3, 7, 10, 14, 21, 28, 42, 56, 70, <mark>84</mark> days
- Non-reactive sand is used with reactive coarse agg, and viceversa.

MCPT Validation

 Evaluated 33 aggregates with known field performance

 Limited set of 12 aggregates were tested in MCPT, CPT and AMBT for correlations

 Evaluated 9 different fly ashes with different chemical composition

 Evaluated Slag, Meta Kaolin, Silica Fume, Lithium Admixtures

Coarse Aggregates in MCPT

Fine Aggregates in MCPT

MCPT Results for Fine Aggregates

MCPT 56-expansions for coarse aggregates

Aggregate ID

MCPT 56-expansions for fine aggregates

Comparison of MCPT Results with CPT and AMBT

	% Expansion		Average %		
Aggregate	MCPT, 56 Days	ASTM C 1293,	ASTM C 1260,	Rate of	Field
Identity	(CV %)	365 days	14 days	Expansion	Experience
				(8-12 wks)	
L4-SP	0.149 (4.08)	0.181	0.350	0.0152	Reactive
L11-SD	0.099 (4.97)	0.109	0.220	0.0043	Reactive
L15-NM	0.185(3.43)	0.251	0.900	0.0231	Reactive
L19-NC	0.149 (1.16)	0.192	0.530	0.0092	Reactive
L23-BB	0.017 (8.81)	0.032	0.042	0.0047	Innocuous
L54-GLN	0.046 (4.34)	0.050	0.235	0.0122	Reactive
L32-QP	0.070 (3.01)	0.070	0.080	0.0193	Reactive
L34-SLC	0.039 (8.31)	0.030	0.190	0.0102	Low reactive
L59-MSP	0.023 (2.47)	0.030	0.100	0.0070	Innocuous
L56-TX	0.440 (4.21)	0.590	0.640	0.0250	Reactive
L35-GI	0.091 (9.93)	0.090	0.260	0.0288	Reactive
L36-SB	0.115 (9.83)	0.150	0.460	0.0320	Reactive

MCPT-56 day versus CPT – 365 day

MCPT 56 day versus CPT 365 day

Clemson University

MCPT-56 day versus AMBT – 14 day

ACR Prone Kingston Dolomitic Aggregate from Ontario in MCPT

Proposed criteria for characterizing aggregate reactivity in MCPT Method

the second se		
Degree of Reactivity	% Expansion at 56 Days (8 Weeks)	Average Rate of Expansion from 8 to 12 weeks
Non-reactive		
Low/Slow Reactive		
Moderate Reactive	0.041% – 0.120%	N/A*
High Reactive	> 0.121%-0.240%	N/A*
Very Highly Reactive	≥ 0.24 1%	N/A*

* N/A - Not Applicable

Evaluation of Fly Ashes in MCPT Effect of Fly Ash Composition

Evaluation of Other SCMs in MCPT

Spratt Limestone Aggregate

Performance of Natural Pozzolans in MCPT

Correlation between 56-day MCPT and 2-Yr CPT

Correlation between AMBT and MCPT

Clemson University

Proposed Criteria for Evaluation of SCMs

Efficiency of Mitigation	% Expansion at 56 Days (8 Weeks)	% Expansion at 112 Days (16 Weeks)
Effective	< 0.020%	<mark>≤ 0.040%</mark>
Uncertain*	0.020% – 0.025%	
Not Effective	> 0.025%	> 0.040%

MCPT - AASHTO Test Method

 AASHTO has approved this method as a provisional standard AASHTO TP 111

Multi-Lab Variability in Results of MCPT

- Four different aggregates were used:
 - Spratt Siliceous Limestone (R-CA)
 - Adairsville Limestone (NR CA)
 - McCombs Sand (R-FA) (formerly Jobe Sand)
 - Glasscock Quartz sand (NR FA)

• Six different labs were involved in this study

- o Turner-Fairbank Highway Research Center
- Nebraska Dept. of Roads
- o Delaware Dept. of Transportation
- o Bowser-Morner, Inc.
- o Purdue University
- o Clemson University

Test Matrix for Multi-Lab Variability in MCPT

Mix #	Coarse Aggregate	Fine Aggregate	SCM
1	Spratt Limestone (Reactive)	Glasscock Sand (Non-Reactive)	
2	Adairsville Limestone (Non-Reactive)	McCombs Sand (Reactive)	
3	Adairsville Limestone (Non-Reactive)	Glasscock Sand (Non-Reactive)	
4	Spratt Limestone (Reactive)	Glasscock Sand (Non-Reactive)	25% Class F Fly Ash (CaO content = 1.24%) (S+A+F content = 84.8%)

- 1. Turner-Fairbank Highway Research Center
- 2. Nebraska Dept. of Roads
- 3. Delaware Dept. of Transportation
- 4. Bowser-Morner, Inc.
- 5. Purdue University
- 6. Clemson University

Round-robin Test Results

Correlation between 56-Day % Exp. and COV

Where do we stand with MCPT now?

MCPT Status

- AASHTO approved this method as provisional standard – AASHTO TP 111
- Excellent correlation between 56-day MCPT
 Expansion and 365-Day CPT Expansion
- Ability to distinguish slow/low reactivity aggregates
- Ability to identify both ASR and ACR prone aggregates
- In short, MCPT provides a reliable alternative to AMBT and a rapid alternative to CPT

Future Direction

- Need to coordinate a multi-regional and multi-state effort to conduct a round-robin test to develop precision and bias statements for this method
- Need to develop a robust correlation between MCPT and field performance (Regional outdoor exposure sites)
- Need to explore the possibility to evaluate ASR potential of job concrete mixtures.
- Need to study the effect of companion non-reactive aggregates as well as of cement composition on test results.

Request for States

- To participate in a pooled-fund study to develop MCPT method into a more comprehensive tool to deal with AAR issues in concrete
- Primary research needs are:
 - Round-robin study to establish robustness, precision & bias statements
 - Correlation with field performance on a more broader basis (outdoor exposure sites, False +ve and False -ve aggregates)
 - Develop a framework to evaluate AAR potential of job concrete mixtures (with emphasis on pessimum behavior)

Influence of Job Mix Parameters on ASR

- Typical job mix parameters that differ from the standard MCPT method are:
 - o w/c and w/cm ratios
 - o Total cement content
 - o Total alkali loading in concrete
 - Dosage of SCMs
 - Vol. fraction of aggregates in concrete
 - Presence of blended aggregates with competing reactivity

 Influence of regional temperature and moisture variations on ASR progression/mitigation in concrete

Cancer in Concrete (ASR)

A Preventable Disease

Questions? prasad@clemson.edu

