MnDOT Concrete Pavement Research – Recent Implementation and Ongoing Studies

NCC Spring 2014 Meeting Jacksonville, FL April 22nd, 2014

Tom Burnham, P.E.

Minnesota Department of Transportation

×

NCC Survey on Research

- 37 Projects
- FHWA Sponsored: 1
- Pooled Funds: 6
- Minnesota DOT: 19
- Local Road Research Board: 2
- MnROAD: 9

Will highlight 7 implemented products and 6 recently completed or ongoing studies

Implemented Research

M

Implementation of an International Roughness Index for Mn/DOT Pavement Construction and Rehabilitation

- MnDOT funding
- P.I. Jim Wilde, Minnesota State University- Mankato
- Completed in 2007
- CP Road Map tracks: 4, 8

м

Implementation of an International Roughness Index for Mn/DOT Pavement Construction and Rehabilitation

- Objectives: Develop an implementable specification for the use of the International Roughness Index (IRI) for smoothness incentives and disincentives on concrete pavements in Minnesota (switch from Profile Index)
- Product(s): Recommendations for modifying the 2006 pilot specification for using International Roughness Index for concrete pavements in Minnesota.

M

Implementation of an International Roughness Index for Mn/DOT Pavement Construction and Rehabilitation

D.1.b Concrete Pavements

For concrete pavements, the Engineer will use equation PCC-A.

Table 2399-5 Smoothness Pay Adjustments and Corrective Work for Concrete Pavements					
Equation Smoothness in/mi [m/km]		Pay Adjustment \$/0.1 mi [0.16 km <i>]</i>			
	< 50.0 [0.79]	890.00			
PCC-A	50.0 – 90.0 [0.79 – 1.42]	$2940.00 - 41.000 \times \text{Smoothness}$ [$2940.00 - 2597.800 \times \text{Smoothness}$]			
	> 90.0 [1.42]	Corrective Work to ≤ 71.7 in/mi [1.13 m/km]			

Study of Surface Characteristics for Rehabilitating Existing Concrete Pavements

- Pooled funds: MN, TX, FHWA
- P.I.s: Bernard Izevbekhai, MnDOT
 Jim Wilde, Minnesota State University- Mankato
- Completed in 2010
- CP Road Map track: 4

М

Study of Surface Characteristics for Rehabilitating Existing Concrete Pavements

- Objectives:
 - 1) To evaluate the initial effects of various diamond grinds on concrete pavement surfaces
 - 2) To observe the changes in surface characteristics during the first several years after grinding
- Findings: (Conventional Diamond Grinding)
 - 1) Immediate increase in mean texture depth, with a quickly declining value over the first year after grinding
 - 2) Texture measurements then leveled off with little further change, but in most cases greater than the pre-grind texture
 - 3) Ride quality measurements indicated generally constant performance

- Conventional diamond grinding used frequently in conjunction with CPR
- Specification for Next Generation Concrete Surface (NGCS)

•

Evaluation of Skid Resistance of Turf Drag Textured Concrete Pavements

- MnDOT funding
- P.I. Tim Nelson, MnDOT
- Completed in 2011
- CP Road Map track: 4

Evaluation of Skid Resistance of Turf Drag Textured Concrete Pavements

Objectives:

- 1) Examine performance of concrete pavements with Astro-Turf drag texture
- 2) Develop friction degradation models

Findings:

- 1) 3 friction degradation models were developed and validated
- 2) Rate of friction degradation was proportional to the FN value
- 3) Turf drag provides sufficient texture if the proper mix design, construction and maintenance practices are followed

M

Use of Non-woven Fabric Interlayer for Unbonded Concrete Overlays

- MnDOT funding
- P.I. Lev Khazanovich, University of Minnesota
- Completed in 2012
- CP Road Map tracks: 2, 8

Use of Non-woven Fabric Interlayer for Unbonded Concrete Overlays

Objectives:

- 1) Evaluate performance of thin unbonded concrete overlays placed on top of fabric interlayers
- 2) Characterize drainage of fabric interlayers

Findings:

- 1) Fabric interlayers provided sufficient stress relief for the experimental slabs
- 2) Drainage provided by the fabric interlayer more than adequate

Use of Non-woven Fabric Interlayer for Unbonded Concrete Overlays

- Implementation:
 - 1) 4 thin UBOL cells at MnROAD
 - 2) Several standard (thick) UBOL projects, up to 10 miles in length, placed in greater Minnesota

Development of a Concrete Maturity Test Protocol

- MnDOT funding
- P.I. Jim Wilde, Minnesota State University- Mankato
- Completed in 2013
- CP Road Map track: 7

Development of a Concrete Maturity Test Protocol

Objective:

- 1) Develop strength-maturity relationships for various high-SCM and low w/c mixes often utilized by MnDOT
- 2) Visit 18 concrete paving projects on interstate, state and county highways, establishing the viability of using flexural beams as specimens

Products:

- 1) Exponential model of very early age strength development suitable for most cases
- 2) Maturity curve database, where different mixes and their associated maturity curves can be entered and stored for future reference
- Recommended future construction specifications utilizing maturity method

Development of a Concrete Maturity Test Protocol

Project / Mix Name	US-14	Concre	ete Maturity Data	
MnDOT Project / SP Number	8101-44	Approx. Age,	Maturity at Time of Testing, C-hrs	Beam Flexural Strength, psi
Mix Designation	3A21-5	days	resuring, e filio	Cucingui, poi
Beam Casting Date	8 /16/2010	1	944	444
Mix Data		2	1747	494
Cement Content, lb/cy	417	3	2571	510
Cement Type / Manufacturer	Holcim	_		
Fly Ash Content, lb/cy	179	7	5952	564
Fly Ash Type / Manufacturer	CCREEK	28	22351	653
w/cm	0.39			

M

MnROAD PCC Thickness Optimization

- MnDOT funding
- P.I. Tom Burnham, MnDOT
- Completed in 2013
- CP Road Map tracks: 9, 13

М

MnROAD PCC Thickness Optimization

Objective:

Determine how "thin can you go" and still maintain reliable performance under heavy traffic

Thin = 5", 5.5", 6", 6.5" (interstate traffic)

Findings:

- 1) Thin concrete sections can withstand substantially more traffic than AASHTO designs predict (over 4+ million CESALS on 6")
- Thin slabs are much more sensitive to loss of support and curling effects
- 3) Thin slabs are very difficult to repair

MnROAD PCC Thickness Optimization

Note: Design thicknesses shown, as-built = typically thicker

 Implementation: MnDOT lowered minimum thickness for concrete pavements to 6"

Development of Improved Design Procedure for Bonded Concrete Overlays of Existing Asphalt Pavement [BCOA-ME]

- Pooled Funds
- P.I. Julie Vandenbossche, University of Pittsburgh
- Completed in 2013
- CP Road Map tracks: 2, 8

Development of Improved Design Procedure for Bonded Concrete Overlays of Existing Asphalt Pavement [BCOA-ME]

Objective:

Develop stand alone, rational mechanistic-empirical based design procedure for thin bonded concrete overlays of existing asphalt pavements

Product:

BCOA-ME

- Accounts for effect of climate on both overlay and underlying HMA modulus
- Structural fatigue models based on panel size

BCOA-ME Procedure

MnDOT has adopted as standard design procedure for BCOAs

Recently Completed or Ongoing Research

MnDOT PCC Thickness Variation

- MnDOT funding
- P.I.s Lev Khazanovich, Kyle Hoegh, Randal Barnes, University of Minnesota
- Projected Completion: 2016
- CP Road Map track: 2

MnDOT PCC Thickness Variation

- Objective:
 - Characterize variation in as-built thickness of concrete pavements
 - 2) Determine correlation with observed distresses

Notes:

- A similar project was completed in 2013 for MnROAD test cells
- This study extends to pavement sections throughout Minnesota
- Findings could influence MnDOT pavement design procedures

٠,

MnROAD PCC Thickness Variation

Development of Improved Design Procedure for Unbonded Concrete Overlays of Existing Concrete and Composite Pavements

- Pooled Funds
- P.I.s Lev Khazanovich, University of Minnesota
 Julie Vandenbossche, University of Pittsburgh
 Mark Snyder, Consultant
- Projected Completion: 2016
- CP Road Map tracks: 2, 8

۲

Development of Improved Design Procedure for Unbonded Concrete Overlays of Existing Concrete and Composite Pavements

Objective:

Develop stand alone, rational mechanistic-empirical based design procedure for unbonded concrete overlays of existing concrete and composite pavements

Notes:

- Applicable to all UBOL thicknesses
- Main task to characterize interlayer systems and materials
- Likely to be combined with BCOA-ME

4

Investigation and Assessment of Colored Concrete Pavement

- LRRB funding
- P.I.s Tom Burnham, (Ally Akkari), MnDOT
- Completion: 2014
- CP Road Map track: 1

Investigation and Assessment of Colored Concrete Pavement

٠,

Investigation and Assessment of Colored Concrete Pavement

Objective:

Determine cause for observed early distresses in colored concrete crosswalks, medians and sidewalks

• Findings:

- Compromised freeze/thaw durability
- Chemical attack of paste and fine aggregates (ASR)
- Thermal compatibility issues

M

Use of Plate Dowels in Concrete Pavements

- MnDOT funding
- P.I. Tom Burnham, MnDOT
- Completion: 2016
- CP Road Map track: 6

Use of Plate Dowels in Concrete Pavements

- Objectives:
 - Determine performance of plate dowels in thin concrete pavements
 - 2) Determine feasibility of using plate dowels in concrete repairs

Current and past installations at MnROAD:

- Basket installations in 5" PCC (interstate traffic)
- Basket installations in 6' W x 12'L whitetopping panels
- Retrofit dowels in 5" UBOL
- Full-depth panel replacements in 5" PCC
- Full-depth joint replacements in 6" PCC
- Full-depth joint replacement in 9.5" PCC (interstate traffic)

Use of Plate Dowels in Concrete Pavements

Use of Plate Dowels in Concrete Pavements

6 to 7 CoVex across joint

5 CoVex across joint

M

Benefit of Fibers in Thin PCC Pavements

- MnDOT funding
- P.I. Tom Burnham, MnDOT
- Completion: 2018
- CP Road Map tracks: 1, 2

Benefit of Fibers in Thin PCC Pavements

- Objectives:
 - Determine performance of thin structural fiber-reinforced concrete overlays and other PCC repairs
 - Determine cost effectiveness

Current installations at MnROAD:

- 4" and 5" thick BCOA
- 3" UBOL
- Full-depth joint repairs

Sealing Joints in BCOA

- MnDOT funding
- P.I.s Tom Burnham, MnDOT
- Completion: 2013
- CP Road Map tracks: 6, 8

١,

Sealing Joints in BCOA

Objectives:

Determine performance sealed/filled versus unsealed/unfilled joints in BCOA (single saw-cut joints with hot pour asphalt sealant)

Recent findings based on MnROAD BCOA test cells:

- For PCC overlay < 4.5"
 - Layer bonding is more critical than joint deterioration
 - Recommend sealing joints
 - Once placed, important to maintain seal
- For PCC overlay > 4.5"
 - Joint condition more critical than layer bonding
 - Sealing optional
 - If sealed, must be maintained

Sealing Joints in BCOA

Questions????

