Precast Pavement Construction Using The Super-Slab System ®

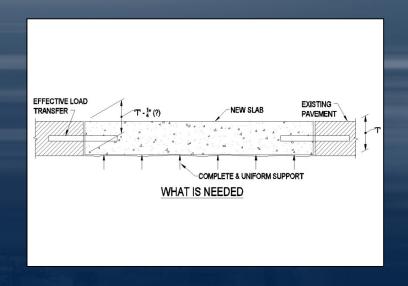
TTCC/ National Concrete Consortium

April 2, 2013

The Fort Miller Co., Inc.

Dan E. Moellman, P.E.

Precast Concrete Pavement Slabs = Overnight Repairs



145,000 ADT I-287, Tarrytown, NY 200,000 ADT I-15, Ontario, CA 180,000 ADT I-66, Fairfax, VA

Precast Pavement Emulates Cast in Place

- Full Bedding Support
- Load transfer Dowels
- Slab Surface Geometry

Current Precast Systems

- Precast Prestressed Concrete Pavement (PPCP)
 - Pre & post tensioned (250'<u>+</u> assembly)
 - Developed by FHWA (non-proprietary)
- Top-Slot Jointed Systems (Michigan Method)
 - Jointed slab lengths 16' + long
 - Developed by FHWA (non-proprietary)
 - Flowable fill or urethane foam support
- Bottom-Slot Jointed System (Super-Slab®)
 - Jointed slabs 6' to16'
 - Grade supported
- Other systems are "appearing"

Bottom-Slot Super-Slab® System (Proprietary)

- Simple slab-on-grade system
- Standard dowels and tie bars (JRCP)
- Built-in bedding grout distribution

- Precision grading equipment
- Warped and planar surfaces
- 15,017 slabs = 1,574,280 SF INSTALLED

(75 projects, 25 lane-miles completed in 11 States + ONT & QUE)

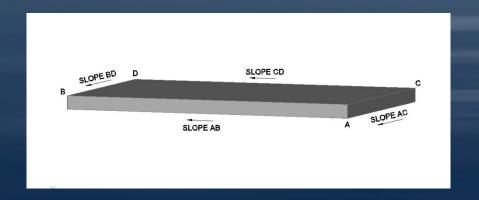
Super-Slab® Load Transfer Dowel System

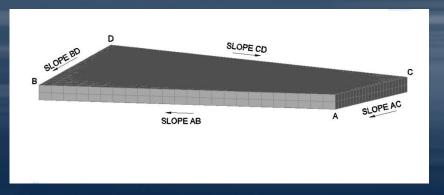
- Dowels engage slots in adjacent slab
- Pump dowel grout into ports
 - Grout reaches 2500 psi in about 2 hours
- Fill slots and joint between slabs
- Dove-tail slot resists bar pop out

Indicators for Long Life - Full scale load testing in California

Test results show no cracks or distress

Falling Weight Deflectometer




143 Million ESALs (100 KN Load)

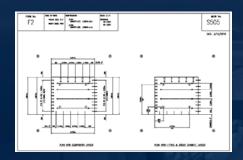
4.3 Million Cycles

Two Types of Slabs

Slab shape depends on geometry of pavement surface

Single Plane

 Slopes of opposite sides are equal


Warped Plane

 Slopes of opposite sides are un-equal

Controlled Fabrication Conditions

Accurate Forms

Accurate Piece Drawings

Roller Screed - Accurate Top Surface



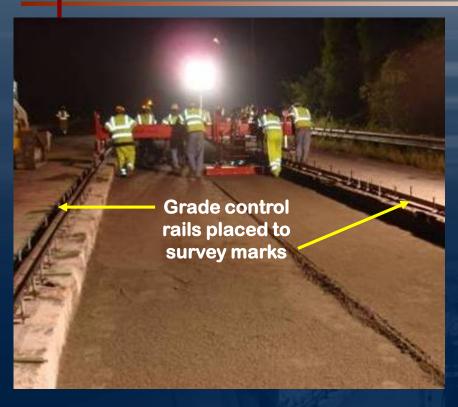
Ideal Finishing (and curing)
Conditions

Slab Layout

Use Template

Panel Point - New Location

Saw Cutting and Removal



Cuts - Full Depth - Accurate

Slab crab bucket

Trucks - right size - right number

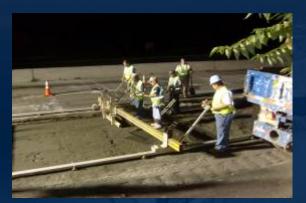
Full and Complete Bedding A Two-Step Process

PRIMARY - Precisely-Graded (<u>+</u> 1/8") Compacted Fine Aggregate Material

SECONDARY - Grout Fills Any Voids

Precision Grading is the Key!

Super-Grading = fully-compacted to 1/8th inch +


- Thin layer (1/2") fine bedding material
- Grade Compact Grade
- Provides "near complete" subgrade support without grout
- Slabs can be opened to traffic before grouting

Small Scale Grading

Rail Supported and Hand Operated

Auger H.O.G.

Mini-H.O.G.

Hand Operated Grader (H.O.G.)

Shutter Screed

Grading Patches With Hand- Operated Grader (H.O.G.)

Three Steps (12 minutes)

First Pass (high)

Compaction

Last Pass (done)

First Pass (1/4" high)

Compaction

Continuous Grading With Hand Operated Grader H.O.G.

Three Steps

Last Pass (done)

(over 500 LF per night possible)

Drilling for Dowels

Mark Out (accurately) to Match Dovetail Slots

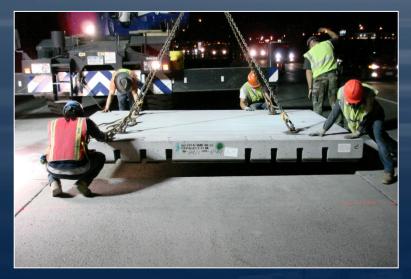
16 holes – 12 minutes

Shipping and Placing

- Size slabs for shipping
 - 12' Max. width
 - Special permits
- Ship in order by mark number
- Provide unloading lane / shoulder

Placing Slabs – Continuous

Crane Occupies New Slabs



String Line

Set Slab to String

12' Lane & 10' Shoulder (min.)

Placing Slabs - Intermittent

Center Slab in Hole (Single Slab Holes)

Crane Occupies New Slab

Checking for Match

If Not - Pick Up & Re-Grade

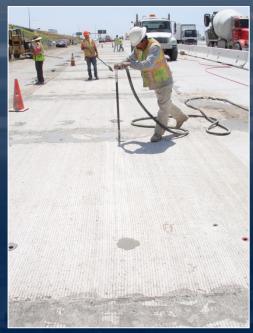
Grouting

- •Truck (grout material & water)
- •Trailer (grout mixer/pump)
- Short hose & nozzle
- Pails (for water measuring)
- Barrels (for waste)

Requires Grout Rig

(Typically completed subsequent nights)

Installing Dowel Grout



Fill Dowel Slots and Joints First

Contractor-Designed Joint Dam

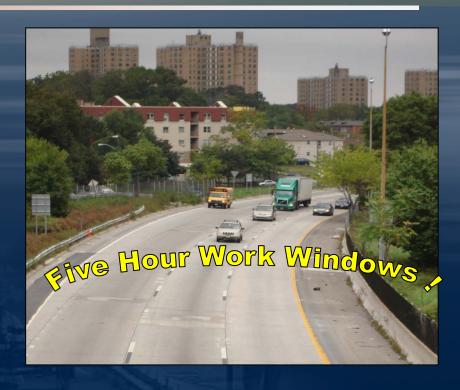
Installing Bedding Grout

Pre-bagged Bedding Grout (Recommended)

Flow Rate
15 - 20 Seconds Max.

Keep Ports Full by "topping off"

Intermittent Repairs (CPR)


I- 90 Albany, NY

I-676 Vine St Expressway Philadelphia, PA

I-15 Salt Lake City, Utah

I-95, New Rochelle, NY

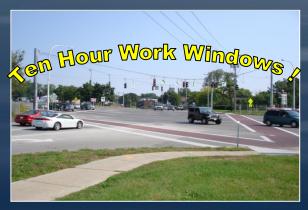
Continuous - Tappan Zee Bridge Toll Plaza

3,000 SF / 8 Hour Shift (Within <u>+</u> 1/8") 2001 - 2002 Open for Rush Hour (135,000 ADT)

Ramps

Oak Brook, IL

Brooklyn, NY



Plan View Tarrytown

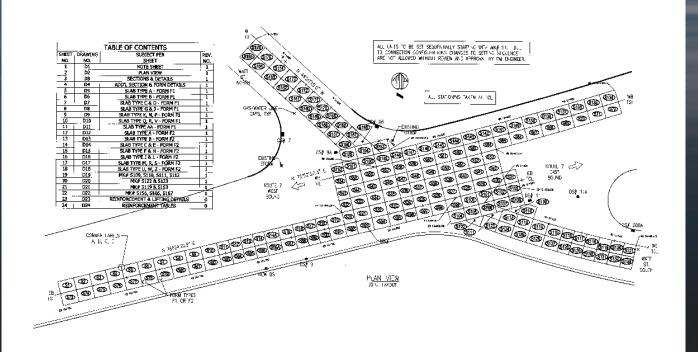
Tarrytown, NY

Intersections

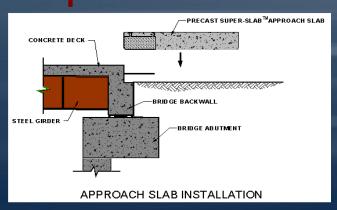
Rotterdam, NY - 2006

Complex Geometry

Brooklyn, NY - 2009



Replacing Existing Full Depth Asphalt


NY 7 Crosstown Connection

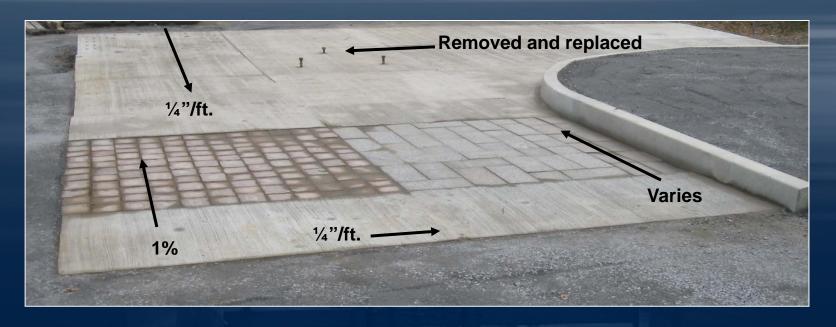
NY 7 Crosstown Connection

Bridge Approach Slabs – NYSDOT Region 9 – Binghamton, NY

Bridge Replacement – US 46 Over Broad St. - Clifton, NJ

- Bridge replaced over two weekends April 2011
- Two-span (40.2', 40.2') continuous, 28.76° skew
- Precast Approach Slabs tied to prefabricated bridge units

Airport Taxiways



Dulles International Airport

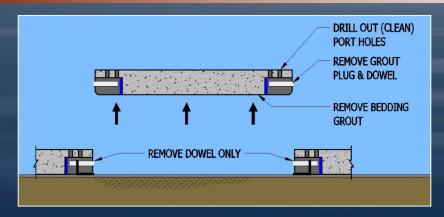
October - 2002

Overnight Installation

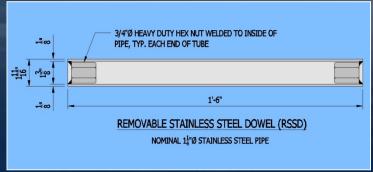
New Precast Concrete Pavement Technology Work Shop – Nov. 9, 2011

Intersection "Quarter" With Varying Cross Slopes

(Cross Walks of Any Texture – Also Removable)

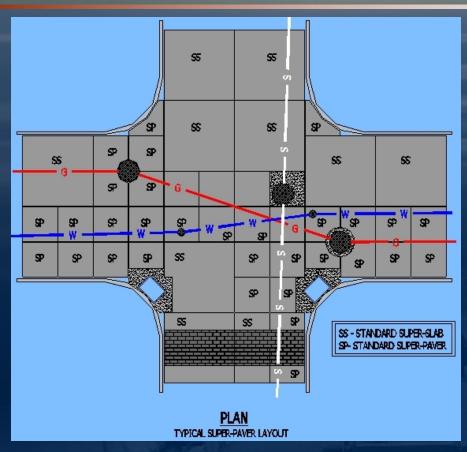

Super-Paver – A Re-usable Urban Pavement (RUP) System

- Light weight
 - 6' x 6' weighs 2 T
- Vertically removable & replaceable
- Warped as required to fit any surface
 - Standard warps are in stock
- Removable and reusable


(Designed specifically for utility-intensive urban highways and intersections)

Slab Removal & Replacement

Remove Slab Vertically and Clean



Super-Dowel

Utility Trench

Replacing Cleaned-up Slab Over New Dowels

Slab Layout Possibilities

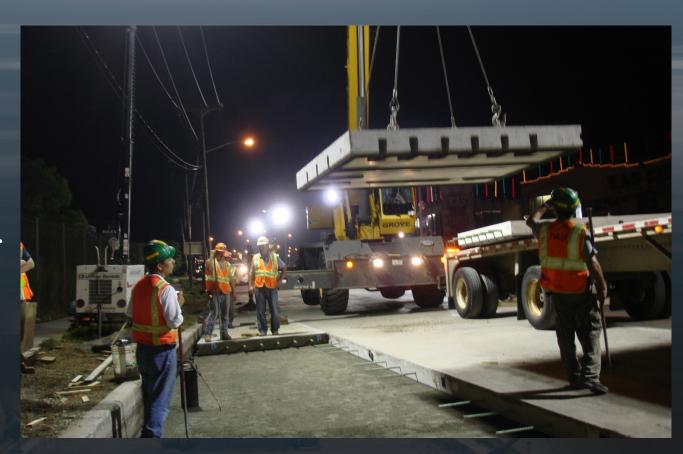
- Intersection surfaces are heavily contoured
- Several standard warped slabs will accommodate almost any intersection
- Standard warped Super Paver slabs will be kept in stock

Mix Big and Small Pavers As Needed

Other Possibilities

Cross Walks

Roundabouts


I-15, Ontario, CA Continuous Placement

NYSDOT Region 11 – Nassau Expressway / Rockaway Blvd.

- 2390 slabs
- •29,000 SY
- Replaced fulldepth asphalt
- •300 lane-ft in 8-hour shift

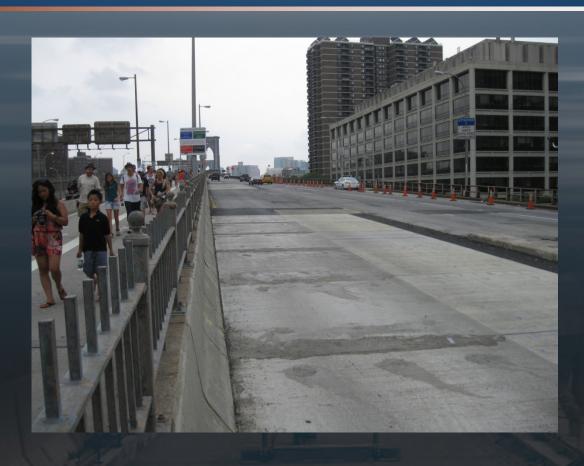
Completed Intersection Approaches Rockaway Blvd., Queens, NY – 2010

Farmers Blvd

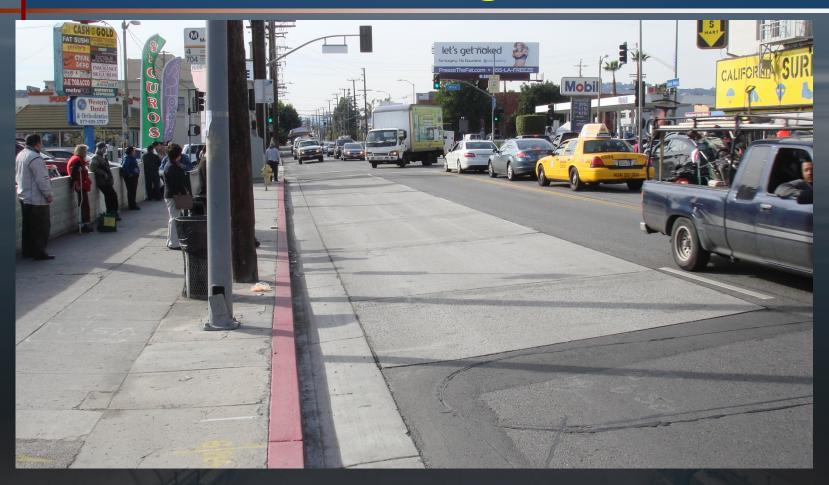
Guy R. Brewer Blvd.

Intersection Approaches Only

New Pavement - Rockaway Blvd.

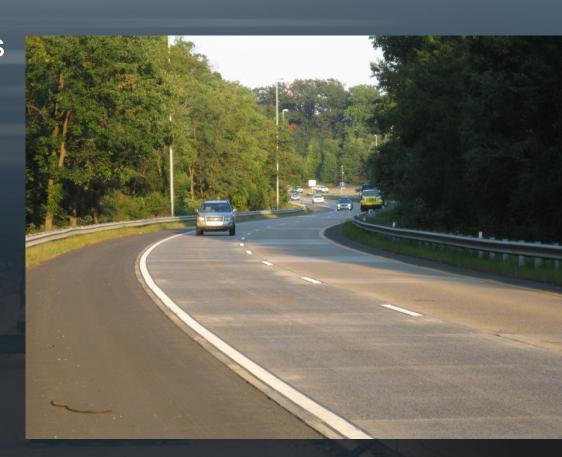


Farmers Blvd. - Before Grinding

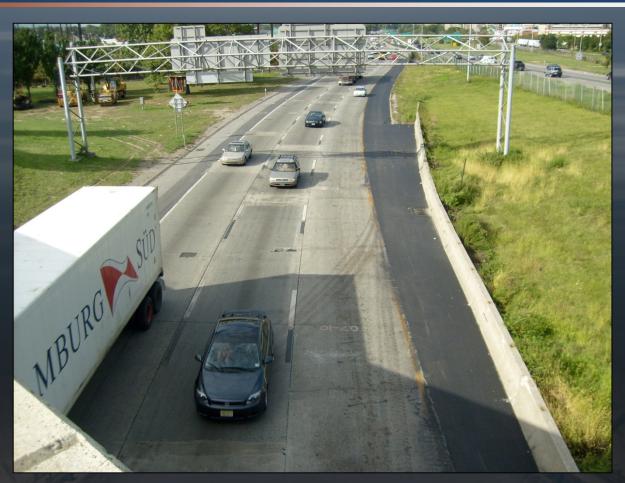

I-95 Alexander Hamilton Bridge

NYC DOT – Brooklyn Bridge

Bus Pads – Los Angeles, CA



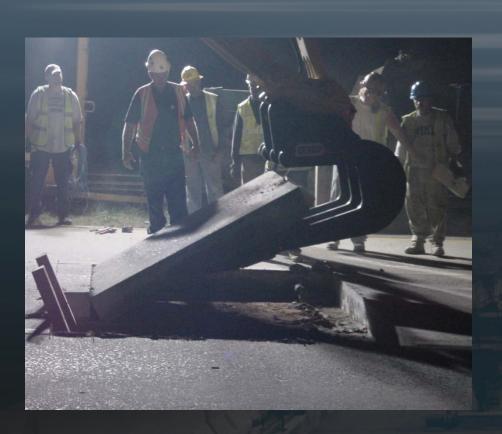
Bus Pads – Los Angeles, CA



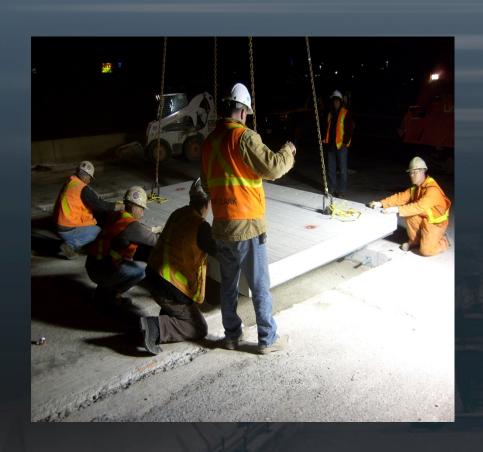
VDOT I-66 WB to US 50 FHWA Highways for LIFE Project

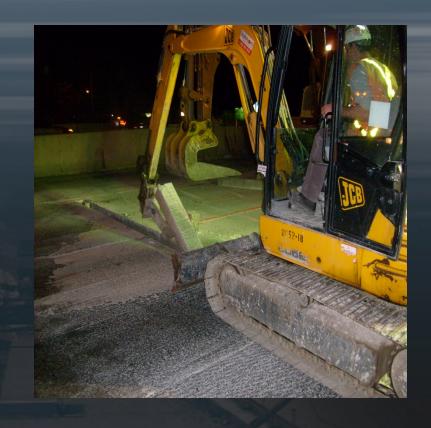
- 184,000 ADT, 5% Trucks
- (3) Repair Types:
 CIP, JPCP & PPCP
- Rt. Lane Super-Slab®
 224 Slabs: 12'x16'x8.75"

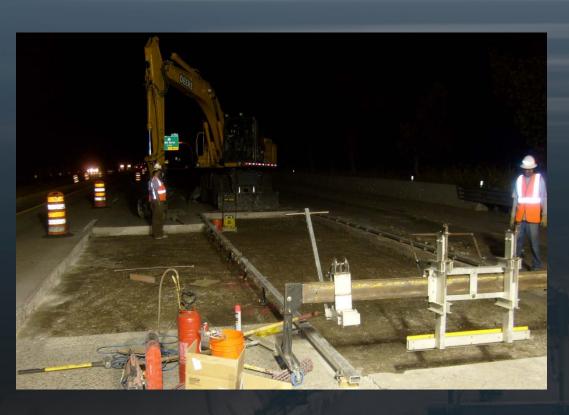
I-95 Pavement Restoration TANE 06-21/D213514 New Rochelle, NY



I-676 Vine St. Expressway PennDOT Project #82705 Philadelphia, PA




I-295 Pavement Repair Contract #041043470 Burlington County, N J



Autoroute 427 Rehabilitation Contract MTO 2008-2003 Toronto, Ontario, Canada

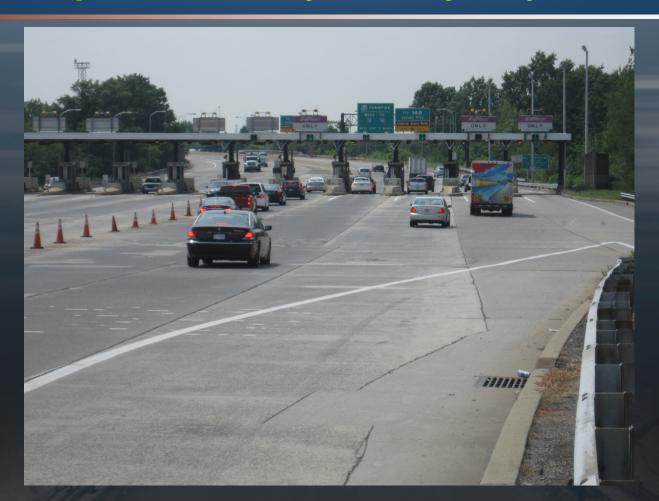
I-15 Rehabilitation Contract IM-15-7(221)332 Layton to Clearfield, UT

Somero S840 and 3-D Profiler

Somero Enterprises Inc. Fort Myers, FL www.somero.com

- •Somero S840
- •3-D Profiler

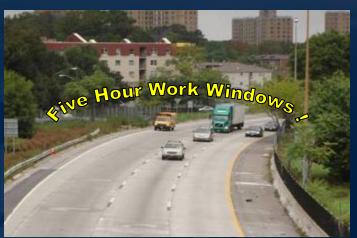
Somero Technology Matches Fort Miller's Warped Slab Requirements



Surface Details

- Panel points are stored in SMP's computer
- Finishes chorded surfaces same a Super-Slab® warped form
- Cross slope varies linearly from one end to the other
- Surface accuracy of ± 1/8"

No Forms


I-78 Interchange 14C Toll Plaza NJ Turnpike Authority, Jersey City, NJ

Intermittent - Installation Rates

- 8 hour work window
 - 12 15 slabs (12' x 10') per night
- 5 hour work windows
 - 7-9 slabs (12' x 10') per night
- Dependent on work window length and spacing of repairs

Continuous - Installation Rates

8 – 10 Slabs (1500 – 2000 SF) per Hour

- 12' x 14' slabs
- Average rate of over 6000 SF (500 Lane Ft.) per 8 hour shift I-15,
 Ontario, CA
 - About one mile in two weeks

Rates should improve

- As Contractors become more familiar
- Improved specialized equipment

Installed Costs (Bid Prices)

- Intermittent Repairs
 - About \$ 238 to \$ 450 per SY
 - Similar to rapid-set concrete costs (in some states)
- Continuous Installations
 - About \$ 238 to \$ 400 per SY
 - Up to 20% less than intermittent repair slabs
- Varies greatly with
 - Length of work window
 - Size of project
 - Local labor rates

Smoothness

- Small differences are expected
 - Fabrication tolerance
 - Grading tolerance
- Super-Slab® finished surfaces <u>+</u> 1/8"
 - May be acceptable for slow speed traffic
- Grind for best International Roughness Index
 - Diamond Grinding is an accepted and cost-effective practice

Benefits to Owners

Reduce construction-related traffic congestion

Longer lasting pavement repairs – Every Day Counts

- 40+ years
- Reduced (long-term) repair costs
- "Get in, get out and stay out"
- "Incremental Total Replacement" now possible

Reduces field inspection time and cost

Precast slabs – plant inspected

Pre-engineered, pre-inspected slabs result in a superior finished pavement

Keys for Success

- Slab Design Thickness & Size
 - Cast-in-place design criteria
 - Freight limitations
 - Base support
 - Cement treated base special consideration
 - Existing concrete pavement below precast
 - Surface geometry
- Field Enforcement
 - Engineer in charge and inspectors
- Contractor aptitude and acceptance

Places For Precast Construction

Philadelphia, PA (2009)

I-95, New York City, NY (2011 -2012- One Lane to Replace One Lane)

Keys to Success (Still More to Learn)

Good engineering
Open minds
Real partnering

