# Constructing a Quality Product – Balancing Risk (and Reward) in Changing Times



Tara Cavalline, PhD, PE
UNC Charlotte

National Concrete
Consortium
Fall 2018 Meeting –
Saratoga Springs, NY
September 18, 2018







### Overview

- Quality Defined
- Quality Management and "Culture of Quality"
- Changes shifting risk and reward
- Impacts of these changes
- Role of QC

   the key to rewards?
- PEM Implementation in North Carolina
- Closing thoughts quality from an educator's perspective



# **Quality Defined**

"Quality is defined as the delivery of products and services in a manner that meets the reasonable requirements of the

- owner,
- design professional, and
- constructor,

including conformance with contract requirements, prevailing industry standards, and applicable codes, laws, and licensing requirements"

(ASCE 2012)





# **How Corporations Define Quality**

 "Providing customers with products and services that consistently meet their needs and expectations."

Boeing

- "Meeting the customer's need the first time and every time."
  - General Services Administration,
     US Government
- "Performance to the standard expected by the customer."
  - FedEx
- "Doing the right thing right the first time, always striving for improvement, and always satisfying the customer."
  - -- US Department of Defense



# Quality has the following characteristics:

(Tang et al. 2005)

- 1. It involves meeting or exceeding customer expectations.
- It applies to products, services, people, processes, and environments.
- 3. It is an ever-changing state (what is considered quality today may not be good enough to be considered quality tomorrow).



Joseph Juran 1904-2008



W. Edwards Deming 1904-2008



Walter A. Schewart 1891-1967



# **Evolution of Quality**

- Pre 1900 Craftsman quality control
- Early 1900's Foreman quality control
- World War I through 1930s Inspection quality control
- World War II Mass production brings statistical quality control
  - Statistical tools (sampling plans, control charts) to help make inspection more efficient
- 1960's to? "Total quality control"
   ... in manufacturing

Unlike manufacturing, ensuring quality in construction has a unique challenge –

One-of-a-kind delivery of many projects



# 23 CFR 637, Subpart B

- "Quality Assurance Procedures for Construction."
  - Defines roles, responsibilities, qualifications
  - Provides provisions for acceptance





# Quality is more than QC/QA



Core Elements of a Quality Assurance Program



# Quality is more than QC/QA

### **Quality Management**

### **Keys:**

- Senior-level management support
- Adequate resources/tools
- Policies

### **Promoting "Culture of Quality"**

- Values of organization are clear
- People need to know what is required of them
- Can use skills to effectively produce, innovate, and compete
- Open communication





## **Changing Times**

- Materials
- Construction methods
- Types of tests and specifications
- Technology
  - QA/QC Tools
  - QM Tools
- Project delivery methods
- Design-Build and Operate/Maintain
  - 23 CFR 637.207(a) provisions applicable to Design-Build projects and other alternative contracting methods
  - Warranties (23 CFR 637.207(a)(1)(iv))





### Risk Continuum

**OPPORTUNITIES** Strategic Objectives Operating UNCERTAINTY Performance **HAZARDS** Compliance and Prevention

Adapted from Sharon 2005



# **Balancing Acts**

Testing and Inspection Costs

Material Quality and Performance Risk



From Dvorak 2018 and Withee 2018, FHWA



# Impact of Changes in Delivery Method



# Impact of Changing Specification Type

Risk = exposure to possible loss

Risks must be recognized and assessed.

- Safety
- Cost
- Schedule
- Project quality

### **Risk Profiles**



### Type of Specification



# The Math of Quality Relationship to Other Construction Parameters

- Quality and cycle time
  - Quality improvement efforts will reduce cycle time
- Quality and productivity
  - Productivity = saleable output / resources used
  - Reduction in rework
  - Improvement in quality directly results in an increase in productivity
- Quality and initial cost
  - As the quality of design increases, cost increases
  - As quality standards are increasingly met, cost decreases
- Quality and value
  - Value = Quality / Price
  - Evaluate the value provided, relative to the competition



# Cost of conformance Cost of implementing quality

- Know <u>what</u> controls quality and invest in those processes/tools
- Know who controls quality and invest in those people
- Process changes
- Inspection/testing enhancement
- Preventative maintenance
- Process review/audits
- Education and training
- Human resources and recruitment
- Other costs



### Cost of Non-conformance

- Cost of <u>not</u> implementing quality
- Cost of rectifying issues identified during construction
  - Delays
  - Rework
  - Schedule impact
- Non-conformance identified after construction within warranty period
  - Resources/rework/penalties
  - Liability claims
  - Lost opportunities
  - Impact to reputation



### Rewards

### Hard costs

- \$\$\$ savings
- longer lasting pavements
- reduced maintenance

#### Soft costs

- greater productivity
- reduced personnel turnover
- user costs to traveling public (safety, inconvenience)



# A different way to look at the balancing act

Cost of implementing quality

Cost of NOT implementing quality

Costs to improve (an investment in agency/business)

Costs to remediate

⊦

Costs of lost opportunity (rewards)

### Do we have the numbers that we need?

# Costs to implement parts of a quality improvement initiative generally can be computed or estimated

#### Testing Effort by Project Level and Project Stage

|                  | Project stage         |           |                       |           |                               |              |                       |
|------------------|-----------------------|-----------|-----------------------|-----------|-------------------------------|--------------|-----------------------|
|                  | Mixture design        |           | Mixture verification  |           | Quality control               |              |                       |
| Project<br>level | Total duration (days) | Man hours | Total duration (days) | Man hours | Total duration (working days) | Man<br>hours | No. of<br>technicians |
| A                | 7*                    | 150       | 7**                   | 80        | 5                             | 200          | 4 & QC manager        |
| В                | 7*                    | 70        | 7**                   | 75        | 5                             | 135          | 3                     |
| C                | 7*                    | 60        | 3                     | 30        | 5                             | 85           | 2                     |

From Fick 2006



### Do we have the numbers that we need?

# Quantified benefits of implementing quality initiatives are harder to find

- Rupnow and Icenogle (2012) resistivity study for Louisiana DOTD
- Implementing resistivity in lieu of ASTM C 1202 rapid chloride permeability tests
  - \$101,000 personnel cost savings in first year
  - Indirect cost savings for outside tests by contractors \$1.5 million/yr
  - Project cost \$102,878
  - Estimated combined savings of \$1.6 million in first year of implementation

"Balancing risk and reward" is better accomplished when reward is quantified.



# QC plan reduces variability, increases rewards



### PEM Implementation Site in North Carolina

- I-85 widening project north of Charlotte 8 miles in length
- Addition of 4 travel lanes (2 each direction)
- 12-inch thick mainline JPCP
- Two phases



- Contractor-led involvement
- Motivated staff
  - "We know PEM is coming, and we want to get on board."
  - "We already do some of this QC but want to do more."
  - "How can we help?"





### PEM Tests and QC activities

### Category A: Mixture design and approval

- Resistivity test results
- SAM test results
- Box test results

### Category B: Acceptance tests

- NCDOT standard requirements
  - 28-day compressive strength (4,500 psi)
  - Air content (6.0%  $\pm$  1.5%)
  - Max slump 1.5 in
- Shadow Tests
  - SAM test results
  - Resistivity test results

VKelly is being utilized on a trial basis





## PEM Tests and QC activities

### Category D: Control Charts

- Air content, slump, unit weight, concrete temperature
  - One test per lot
  - PEM tests
  - SAM once per day target
  - Resistivity all cylinders tested for compressive strength
  - Bucket test performed at UNC
     Charlotte
- Other control charts may be developed
  - Moisture content of aggregates
  - Fly ash LOI





### **Current Status**

### Implementation Site

- Phase 1 paving complete
- Data analysis ongoing
- Phase 2 paving begins April 2019
- Simultaneous lab study at UNC Charlotte for targeted mixtures
  - implementation of resistivity, SAM
  - demonstrating benefits of increased fly ash contents
  - continuing to demonstrate benefits of Type IL (portland limestone cements)

Quantifying benefits of implementation is a key goal

- Benefits to contractor
  - Benefits to agency



## Thoughts on Future

- Construction Quality
   Management continues to evolve
  - Transformational technologies
  - Project delivery methods
  - Specification approaches
  - Testing technologies
  - Workforce experience
  - Resource allocation
- Responsibilities should be clearly delineated in contract documents, regardless of delivery method

- Communication will be increasingly critical
  - People to people
  - Database to database





### Thoughts on Future

### How will risk/reward shift with movement towards PEM?

 "Agency makes the choice that best fits their situation and willingness to share risk." - Cecil Jones



 Better quantification of benefits of quality initiatives should help balance risk and reward, and promote innovation/quality

### Thoughts on Future

- Quality Management may be the "critical Q"
- Promoting "Culture of Quality" will be critical to ensuring quality despite widespread changes
- Investment in education/training will be critical for quality "buy in"

Typical undergrads entering workforce do not have a good handle on QM/QA/QC

My opinion

- How are we incorporating QM/QA/QC into our courses?
- How are we incorporating QM/QA/QC training into our workplaces?







July 2017

#### "Moving Advancements into Practice"

#### **MAP Brief July 2017**

Best practices and promising technologies that can be used now to enhance concrete paving

# Developing a Quality Assurance Program for Implementing Performance Engineered Mixtures for Concrete Pavements



U.S. Department of Transportation Federal Highway Administration

# Field Reference Manual for **Quality Concrete Pavements**

Publication No. FHWA-HIF-13-059

September 2012



# Testing Guide

for Implementing Concrete Paving Quality Control Procedures

March 2008



National Concrete Pavement Technology Center



This testing guide is a product of an FHWA 17-state pooled fund: Material and Construction Optimization for Prevention of Premature Pavement Distress in PCC Pavements, TPF-5 (066)

## Original Title Suggested by Steve:

# Methods of Acceptance for a Quality Product – Balancing Risk

Potential States Survey topic?

