25 Years of QC/QA An Overview of IDOT's Implementation of Quality Management Contracts for PCC

> James Krstulovich, PE Concrete Technology Engineer

Quality Management Contracts

• In general...

 These contracts make Industry responsible for sampling, testing, and documenting specification compliance; thus, reducing the DOT's burden in those areas to focus on verification and independent assurance.

• Origins?

- Primarily an issue for Hot Mix Asphalt
 - The amount of sampling and testing was overwhelming to the point that samples collected during the summer construction season were not being tested until the winter downtime.
- Has continued to evolve for HMA as Contractors became more proficient and claimed ownership of their product
 - QC/QA: Quality Control/Quality Assurance (<1, 200 tons)
 - QCP: Quality Control for Payment (1,200 7,999 tons)
 - PFP: Payment for Performance (\geq 8,000 tons)

Implementing QC/QA

For Portland Cement Concrete

- First standardized in 1992 concurrent with QC/QA for HMA
- Applicable to all cast-in-place concrete, including 'lean concrete base' and controlled low-strength material
- Currently implemented in 6 of 9 Districts (~85% of IDOT's total PCC)
 - Used a "multi-year phased-in" approach starting in the mid-'90s
 - First focused on larger projects
- Included in projects as recurring special provisions
 - Special Provision for QC/QA of Concrete Mixtures
 - Special Provision for QC of Concrete Mixtures at the Plant

QC/QA Infrastructure

- In addition to the special provisions, QC/QA requires establishing a basic foundation for providing and maintaining quality
 - Personnel training and qualifications
 - "Qualifications and Duties of Concrete Quality Control Personnel"
 - Aggregate and PCC Technician Courses
 - Means and methods
 - Plant/Field Sampling and Testing Schedules for Contractor and DOT
 - "Manual of Test Procedures for Materials"
 - "Required Sampling and Testing Equipment for Concrete"
 - "Development of Gradation Bands on Incoming Aggregate at Mix Plants"
 - "Method for Obtaining Random Samples for Concrete"
 - Documentation
 - "Quality Control Plan for Concrete Production"
 - Calibration of Concrete Testing Equipment Worksheets
 - Sampling and Testing Worksheets

QC/QA Infrastructure Qualified Personnel and Training

The Department maintains a computer database of Qualified Personnel who have successfully completed the appropriate Quality Management courses.

- QC Manager (cost to train: \$1,970-2,255)
 - One of the Aggregate courses and both PCC Levels I & II
- Jobsite Mix Sampling & Testing (cost to train: \$105-985)
 - Concrete Tester (supervised by a Level I or II)
 - Or
 - PCC Level I
- Mix Design (cost to train: \$2,385-2,670)
 - One of the Aggregate courses and all PCC Levels I, II, & III
- Strength Testing Only? (cost to train: \$640-985)
 - PCC Level I
 - Or
 - ACI Concrete Strength Testing Technician Certification
- Gradation Testing Only?
 - Aggregate Gradation Technician (taught by the Districts)
 - Supervised by PCC Level II (or Mixture Aggregate Technician or Aggregate Technician)

QC/QA Infrastructure Qualified Laboratories

- Policy Memorandum for "Minimum Private Laboratory Requirements for Construction Materials Testing or Mix Design"
 - Governs the minimum qualifications for materials QC/QA laboratories operated by Contractors, Producers, and Consultants
- Establishes procedures for...
 - Evaluating and approving Private Labs
 - Inspecting test equipment and testing procedures
- Why?
 - To ensure that Private Labs are equipped and maintained at a uniformly high level of quality
- More specifically?
 - Contactor test results are used in the acceptance process
 - Federal Regulations (23 CFR 637) require the Department to establish a program for "qualifying" laboratories involved in tests which are used for acceptance

QC/QA Infrastructure Equipment Needs

- Proportioning
 - Aggregate Moisture Test Equipment
- Sampling
 - Wheelbarrow or Similar Equipment
 - Shovel
- Testing
 - Slump Kit
 - Air Meter Kit and Calibration Equipment
 - Unit Weight Kit, Calibration Equipment
 - Thermometer
 - Hand Scoop
 - Trowel or Wood Float
 - Tamping Rod or Vibrator
 - Mallet
 - Plastic Cylinder Molds

- Curing
 - Moist Cabinet or Moist Room
 - Recording Thermometer
 - RH Measuring Device and Logbook, or Recording Device
 - Water Storage Tank
 - Max/Min Thermometer and Logbook, or Recording Thermometer
- Aggregate Sampling & Testing
 - Electronic Balance
 - Sieve Shaker
 - Sample Splitters
 - Sieves
 - Drying Oven
 - Double Electric Hot Plates or Gas Burners
 - Sink, Faucet, and Water Supply
 - Drying Pans
 - Holding Pans

QC/QA Infrastructure Required Publications

- IDOT's Manual of Test Procedures for Materials
 - Available to download on IDOT's website
 - Updated annually
 - Primarily includes Illinois Test Procedures and IDOT modifications to standard test procedures published by AASHTO and ASTM
- Also includes the following Quality Management documents:
 - Required Sampling & Testing Equipment
 - Development of Gradation Bands for Incoming Aggregate at Mix Plants
 - Method for Obtaining Random Samples
 - And more...

Manual of Test Procedures for Materials

QC/QA Infrastructure Required Publications

- Current copies of all AASHTO and/or ASTM test procedures performed
 - Comprehensive access to these test procedures is available electronically
 - Local Industry associations have also started offering access as part of membership

ASTM

AASHTO

Single Registered User Online Basic		\$3539
Single Registered User Online Plus		\$4247
Multi-User (LAN) Online Basic		\$7078
Multi-User (LAN) Online Plus		\$8494
2017 Print Volumes ISBN 978-1-6822-1223-3	2017	\$3150
2016 Print Volumes ISBN 978-1-6220-4882-3	2016	\$3044

SINGLE-USER LICENSE Code: HM-WB1 List Price: \$775

TWO-USER LICENSE Code HM-WB2 List Price: \$1,160

THREE-USER LICENSE Code HM-WB3 List Price: \$1,550

QC/QA Infrastructure Documentation: Quality Control Plan

- Submitted a minimum 45 calendar days prior to production
 - Engineer must respond within 15 calendar days of receipt
 - Mixture production cannot begin until Plan is approved
 - Amendments may be proposed, and are subject to mutual agreement
- Identifies qualified personnel and roles
- Details sampling and testing regimen
- Details procedures for failing tests and defective work
- Outlines communication procedures amongst personnel
- Identifies methods for field documentation
- Identifies pre-pour meeting schedule(s)
- Identifies mix designs and mixture components, and details verification testing of same (including responsible labs)

QC/QA Special Provisions

- Defines roles
 - Level I, II, and III PCC Technicians and Concrete Tester
 - Aggregate, Mixture Aggregate, and Gradation Technicians
- Establishes basic laboratory requirements
 - References Policy Memo, required sampling and testing equipment, forms for maintaining equipment calibration and verification, etc.
- Establishes need for Contractor's QC Plan
- Details Contractor's duties and responsibilities for QC
 - Including hierarchy of technician roles
 - Required Plant sampling and testing
 - Required Field sampling and testing
- Details Engineer's duties and responsibilities for QA and Independent Assurance
- Establishes criteria for comparing QC and QA test results of split samples
- Outlines process for reconciling conflicting split sample test results
- Defines acceptance by the Engineer

QC/QA Special Provisions Reconciling Split Sample Test Results

- If one party's split sample test results are not within specification limits while the other's is within, retests shall be performed for:
 - Slump, Air Content, or Aggregate Gradation
 - If either retest is still failing, both parties shall investigate the sampling method and test procedure, equipment (condition and calibration), etc.
 - If unresolved, the Contractor shall reject* the material (if not yet placed) or, if already placed, the Engineer will consider it unacceptable.

QC/QA Special Provisions Acceptance by the Engineer

- Acceptance by the Engineer is based on the following:
 - Contractor's compliance with all contract documents for quality control
 - Validation of contractor's QC test results by comparison with the Engineer's QA results.
 - Comparison of the Engineer's Independent Assurance results with specification limits.
- In consideration of the above, the Engineer may suspend mixture production, reject materials, or take other appropriate action if the Contractor does not control the quality.

Implementing QC/QA

- Some of the hurdles cited by Districts and Industry:
 - Cost/Time staff, equipment, and training for contractors and producers is expensive and takes time
 - Culture redistributing roles and responsibilities amongst DOT, contractor, and producer staff initially resulted in increased conflicts
 - District Buy-In early stages of adoption requires dedication and 'handholding' that might appear contradictory to the basis of QC/QA

Implementing QC/QA

- Benefits cited once fully implemented:
 - Increased knowledge amongst contractors and producers
 - "They become trusted, knowledgeable, expert practitioners of their mix—much more than the majority of IDOT REs who may only see PCC occasionally."
 - Increased product accountability by contractors and producers
 - "They can make mixes more specifically designed to suit their material sources and economics—rather than a one-size fits all approach when the DOT creates cookie cutter designs."
 - Improved working relationship between DOT and contractor
 - "With good QC/QA staff, we have tremendously positive working relationships—we are a combined team working together to make things better for all."

Lessons Learned and Current Perspective

- It is critical that the DOT provides support early during implementation
 - Redistributing responsibilities and duties DOT staff have taken for granted can lead to breakdowns in understanding
- It is critical that the DOT encourages contractor, consultant, and producer buy-in
 - Provides a better working relationship amongst all parties
- Lack of DOT initiative can severely hamper implementation
 - Tentative first steps can send the wrong message
- Dealing with non-compliant material still presents problems
 - Too many factors vying for priority? Conflict of philosophies between Construction and Materials? Impact on the user?

Questions?