Salt Scaling

Dr Peter Taylor Dr Kamran Amini

Institute for Transportation

Acknowledgment

- Portland Cement Association (PCA)
 - √ 5 Year Gleason Fellowship

The Problem

- Loss of surface
 - ✓ Chips or flakes
- Causes are debated
 - ✓ Salt crystallization
 - √ Thermal shock
 - ✓ Osmosis
 - ✓ Glue spalling
 - ✓ Cryogenic suction
- Prevention is not guaranteed
- More of an issue in horizontal slabs than pavements

Factors

- Air void system
- w/cm
- System chemistry
- Finishing
- Curing

Test methods

- Air void system ASTM C 457
- Scaling BNQ
 - √ Similar to ASTM C 672 except
 - > Finishing is early & with a wooden ruler
 - ➤ Curing is longer
 - Presoaked in solution before cycling
- Abrasion
- Hardness
- Sorptivity
- Compressive strength

а	After fabrication
b	After bleeding slows down/stops
С	Initial setting

Summary

- At w/cm = 0.35 Effect of air was negligible.
- Spacing factor of less than 200 μm does not guarantee scaling resistance.
- Salt-scaling is related to sorptivity and abrasion resistance.
- Finishing after bleeding is stopped was beneficial.
- Longer curing improved performance.

Summary

 Seems that the effect of slag on scaling is not physical

