
Implementation of Structural 
Health Monitoring System
Final Report
February 2020 

Sponsored by
Iowa Department of Transportation
(InTrans Project 16-561)
Federal Highway Administration



About the Bridge Engineering Center
The mission of the Bridge Engineering Center (BEC) is to conduct research on bridge technologies to 
help bridge designers/owners design, build, and maintain long-lasting bridges.

About the Institute for Transportation 
The mission of the Institute for Transportation (InTrans) at Iowa State University is to develop and 
implement innovative methods, materials, and technologies for improving transportation efficiency, 
safety, reliability, and sustainability while improving the learning environment of students, faculty, and 
staff in transportation-related fields. 

Iowa State University Nondiscrimination Statement 
Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national 
origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, 
or status as a US veteran. Inquiries regarding nondiscrimination policies may be directed to the Office of 
Equal Opportunity, 3410 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, telephone: 515-294-7612, 
hotline: 515-294-1222, email: eooffice@iastate.edu.

Disclaimer Notice
The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented herein. The opinions, findings and conclusions expressed in this 
publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. 
This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear 
in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement
The Federal Highway Administration (FHWA) provides high-quality information to serve Government, 
industry, and the public in a manner that promotes public understanding. Standards and policies are 
used to ensure and maximize the quality, objectivity, utility, and integrity of its information. The FHWA 
periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality 
improvement.

Iowa DOT Statements 
Federal and state laws prohibit employment and/or public accommodation discrimination on the basis 
of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual 
orientation or veteran’s status. If you believe you have been discriminated against, please contact the 
Iowa Civil Rights Commission at 800-457-4416 or the Iowa Department of Transportation affirmative 
action officer. If you need accommodations because of a disability to access the Iowa Department of 
Transportation’s services, contact the agency’s affirmative action officer at 800-262-0003. 

The preparation of this report was financed in part through funds provided by the Iowa Department of 
Transportation through its “Second Revised Agreement for the Management of Research Conducted by 
Iowa State University for the Iowa Department of Transportation” and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not 
necessarily those of the Iowa Department of Transportation or the U.S. Department of Transportation 
Federal Highway Administration.



 

Technical Report Documentation Page 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

InTrans Project 16-561   

4. Title and Subtitle 5. Report Date 

Implementation of Structural Health Monitoring System February 2020 

6. Performing Organization Code 

 

7. Author(s) 8. Performing Organization Report No. 

Brent Phares (orcid.org/0000-0001-5894-4774), Katelyn Freeseman 

(orcid.org/0000-0003-0546-3760), Lowell Greimann (orcid.org/0000-0003-

2488-6865), and Terry Wipf (orcid.org/0000-0002-1093-0549) 

InTrans Project 16-561 

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

Bridge Engineering Center 

Iowa State University 

2711 South Loop Drive, Suite 4700 

Ames, IA 50010-8664 

 

11. Contract or Grant No. 

 

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered 

Iowa Department of Transportation 

800 Lincoln Way 

Ames, IA 50010 

Federal Highway Administration 

1200 New Jersey Avenue, SE 

Washington, DC 20590 

Final Report 

14. Sponsoring Agency Code 

SPR RB19-016 

15. Supplementary Notes 

Visit www.intrans.iastate.edu for color pdfs of this and other research reports. 

16. Abstract 

Beginning in approximately 2000, the Bridge Engineering Center at Iowa State University, through projects funded by the Iowa 

Department of Transportation (DOT), the Iowa Highway Research Board, the Federal Highway Administration, and a 

transportation pooled fund (TPF) study, began the development of an autonomous structural health monitoring (SHM) system. 

The development of this system centered around the establishment of a monitoring system that could autonomously monitor and 

report on the condition of bridges. The first comprehensive SHM bridge project using continuous monitoring was on the US 30 

Bridge over the Skunk River in Ames, Iowa in 2007. 

It was specifically desired to have a system that could detect changes in structural performance due to damage, etc., allow for the 

determination of bridge load ratings, and help estimate remaining bridge service life. The system had already been demonstrated 

on one bridge on I-80 just west of Des Moines, Iowa and one bridge on I-280 just east of the Quad Cities near Milan, Illinois. 

Another system was scheduled to be installed on US 151 north of Dubuque, Iowa and Kieler, Wisconsin. Also, a portion of the 

system was installed as part of the reconstruction of the US 65 Bridge over the Iowa River in Iowa Falls, Iowa. 

The initial purpose of this work was to further implement the developed SHM system on an additional I-80 bridge (over Cherry 

Creek) and to fully implement the system on the Iowa River Bridge. 

Given the maturity and effectiveness of the developed SHM system validated over a significant time period in cooperation with 

the Iowa DOT and other states, the timing may be favorable for the Iowa DOT to consider implementing a permanent bridge 

SHM system program. If so, the most significant decisions for the Iowa DOT would include developing a comprehensive 

implementation process, including staffing.  

Additional needs would require investment in hardware and software, as well as developing an overall effective process to utilize 

the SHM system. 

17. Key Words 18. Distribution Statement 

autonomous SHM system—bridge preservation plan—bridge SHM system—

Iowa SHM implementation—structural health monitoring 

No restrictions. 

19. Security Classification (of this 

report) 

20. Security Classification (of this 

page) 

21. No. of Pages 22. Price 

Unclassified. Unclassified. 49 NA 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

  

http://www.intrans.iastate.edu/


 

 

  



 

IMPLEMENTATION OF STRUCTURAL HEALTH 

MONITORING SYSTEM 

 

Final Report 

February 2020 
 

 

Principal Investigator 

Brent Phares, Research Associate Professor 

Bridge Engineering Center, Iowa State University 

 

 

 

 

Authors 

Brent Phares, Katelyn Freeseman, Lowell Greimann, and Terry Wipf 

 

 

 

 

Sponsored by 

Iowa Department of Transportation 

(InTrans Project 16-561) 

 

 

Preparation of this report was financed in part 

through funds provided by the Iowa Department of Transportation 

through its Research Management Agreement with the 

Institute for Transportation 

 

 

A report from 

Bridge Engineering Center 

Iowa State University 

2711 South Loop Drive, Suite 4700 

Ames, IA 50010-8664 

Phone: 515-294-8103 / Fax: 515-294-0467 

www.intrans.iastate.edu  

http://www.intrans.iastate.edu/


 

 



v 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................ vii 

EXECUTIVE SUMMARY ........................................................................................................... ix 

1. BACKGROUND .........................................................................................................................1 

2. EVOLUTION OF THE DEVELOPMENT OF AN AUTOMATED SHM SYSTEM IN 

IOWA ...................................................................................................................................2 

2.1 US 30 Bridge over the Skunk River ..............................................................................2 
2.2 SHM Pooled Fund Project .............................................................................................4 

3. IMPLEMENTATION PROJECT SITE DESCRIPTIONS .......................................................13 

3.1 I-80 Bridge WB over Cherry Creek near Newton, Iowa .............................................13 
3.2 US 65 (Oak Street) over the Iowa River in Iowa Falls, Iowa ......................................15 

4. IMPLEMENTATION SITE RESULTS ....................................................................................20 

4.1 I-80 near Newton, Iowa (Cherry Creek Bridge) ..........................................................20 
4.2 US 65 over the Iowa River (Oak Street Bridge) ..........................................................24 

5. RECOMMENDATIONS FOR LONG-TERM SHM IMPLEMENTATION ...........................27 

5.1 Integration of SHM Data into a Holistic Bridge Preservation Plan .............................27 
5.2 Establishment of a Bridge Monitoring “Command Center” ........................................28 

APPENDIX A: SAMPLE SHM SYSTEM BRIDGE PERFORMANCE DATA .........................31 

APPENDIX B: SHM IMPLEMENTATION PUBLICATIONS FROM BEC TO DATE ...........35 

Reports ...............................................................................................................................35 
Journal Papers ....................................................................................................................36 

Non-Refereed Papers .........................................................................................................36 
 

  



vi 

LIST OF FIGURES 

Figure 1. US 30 Bridge over the Skunk River in Ames, Iowa.........................................................2 
Figure 2. First generation SHM system for bridge monitoring: equipment/hardware (left) 

and fiber optic sensor (FOS) (right) ................................................................................3 
Figure 3. I-80 EB Bridge in Iowa over Sugar Creek .......................................................................6 
Figure 4. Field site and office site equipment for typical SHM system ..........................................7 
Figure 5. Solar panels providing power to bridge sensors (left) and battery storage cabinets 

under the bridge (right) ...................................................................................................7 

Figure 6. Instrumentation layout plan for girder gauges on I-80 EB Bridge over Sugar 

Creek ...............................................................................................................................8 
Figure 7. I-280 EB Bridge in Illinois over US 67 near Milan .........................................................8 
Figure 8. Similar field site with field equipment and solar power for typical SHM system 

on the I-280 EB Bridge in Illinois over US 67 near Milan .............................................9 
Figure 9. Instrumentation layout plan for girder gauges on I-280 EB Bridge over US 67 

near Milan, Illinois ........................................................................................................10 
Figure 10. US 151 NB Wisconsin Bridge over County Highway H .............................................11 
Figure 11. Typical hardware equipment ........................................................................................11 

Figure 12. Instrumentation layout plan for girder gauges on US 151 NB Bridge over 

County Highway H in Wisconsin .................................................................................12 

Figure 13. I-80 WB Bridge over Cherry Creek .............................................................................13 
Figure 14. Field hardware and components: typical hardware for the SHM system (top), 

bridge deck strain gauges (center left), steel girder strain gauges (center right), 

and cabinet containing data and communication under the bridge site with power 

provided at the site (bottom) .........................................................................................14 

Figure 15. Plan view of the layout of strain sensors on the steel superstructure elements 

and sensors on the bottom of the concrete deck ............................................................15 

Figure 16. US 65 Bridge over the Iowa River in Iowa Falls: view toward the north near 

downtown (top left), profile view over the Iowa River looking east (top right), 

and lower level of the superstructure of the bridge including floor beams, 

stringers, and deck (bottom) ..........................................................................................16 
Figure 17. Structural monitoring system equipment and path to receiving the data at the 

home base (i.e., office) ..................................................................................................17 
Figure 18. SHM system components associated with the US 65 Bridge over the Iowa 

River: data collected at the bridge site (top left), data logging equipment (top 

right), additional hardware (middle left), organizing home base to connect to 

ISU (middle right), strain gauges on hangers (bottom left), and bridge deck 

sensor placed in the deck (bottom right) .......................................................................18 

Figure 19. Locations of hanger members and the arch rib members on the bridge .......................19 
Figure 20 Strain sensor locations for the stiffening girder, floor beam, and stringer on the 

lower portion of the bridge superstructure ....................................................................19 

Figure 21. I-80 Cherry Creek Bridge usage (number) vs. microstrain ..........................................21 
Figure 22. I-80 Cherry Creek Bridge load rating ...........................................................................22 
Figure 23. Behavior change – Beam 2, east end span, abutment bearing lock-up ........................23 
Figure 24. Iowa Falls Bridge data website sensor timespan results ..............................................25 
Figure 25. Iowa Falls Bridge data website camera selection .........................................................26 



vii 

ACKNOWLEDGMENTS 

The authors would like to thank Iowa Department of Transportation (DOT) Office of Bridges 

and Structures for sponsoring this research and the Federal Highway Administration for state 

planning and research (SPR) funds used for this project. We would like to recognize Ahmad 

Abu-Hawash, Sandra Larson, and Bob Younie for serving on the technical advisory committee. 

 



 

 

 



ix 

EXECUTIVE SUMMARY 

Overall Goals 

The overreaching goals of this project were as follows: 

 Demonstrate the usefulness of Iowa’s custom-built structural health monitoring (SHM) 

system on the management of bridges 

 Document past and current research and the state-of-the-state related to the SHM of bridges 

in Iowa  

 Outline what is needed to go forward in implementing a long-term SHM program using the 

system developed and validated to date 

Background 

The Iowa Department of Transportation (DOT) Office of Bridges and Structures continues to 

provide safe travel conditions on bridges in the state while maintaining critical infrastructure 

assets. Beginning about 20 years ago, the Bridge Engineering Center (BEC) at Iowa State 

University started working toward developing and evolving an autonomous SHM system to 

assess the safety of bridge structures and to determine the remaining life of bridges.  

SHM provides an effective and efficient process to maintain the bridge inventory. The evolution 

of the SHM system includes monitoring of more than 15 bridges, with additional bridge projects 

in progress and planned.  

While there are other structural health processing systems in the US, we believe our SHM system 

is the most comprehensive and effective system to date. An important aspect of the success of 

the SHM system is due to the strong partnership between the Iowa DOT and the BEC.  

Project Description 

These were the four tasks for this particular project: 

 Design, configure, install, and calibrate an SHM system on the eastbound I-80 Bridge over 

Cherry Creek 

 Calibrate the SHM system on the Iowa Falls Bridge 

 Monitor trained SHM sites 

 Document and disseminate information, including recommendations for long-term SHM 

implementation 
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Key Findings, Recommendations, and Implementation Benefits 

Integration of SHM Data into a Holistic Bridge Preservation Plan 

In general, it is already clear that bridge data collected from the SHM system has provided 

valuable information and insights. Bridge engineers will be able to develop ideas on how to use 

the data to understand bridge performance.  

For example, the SHM system data could provide insights into the real-time data versus the 

actual design process used. Critical elements on a bridge could be evaluated using real-time data 

versus expected design behavior, thus gaining a better perspective. Furthermore, the real-time 

data can identify anomalies on the bridge (such as fatigue cracks or a bad bridge bearing), and 

alert bridge engineers that the bridge is not performing correctly.  

Once a repair is made for an anomalous problem, subsequent real-time data can determine if the 

repair is effective. An important aspect of managing bridge performance (usually done by 

inspections of bridges every several years) is to develop a bridge rating to assure safety. Using 

the SHM system data, the bridge rating is continuously collected.  

A more specific and exhaustive list of the information that the SHM system data can provide to 

bridge engineers is included in this report. An appendix includes an example of representative 

data that may be produced by the SHM system for use by Iowa DOT bridge engineers to better 

understand a bridge’s performance.  

Establishment of a Bridge Monitoring “Command Center” 

A focus on data interpretation and quick response to bridge issues is important for a successful 

program. One possible format might be to create a new focus area (or similar) within the Iowa 

DOT. 

Implementation Readiness 

The Iowa DOT has already invested in implementing an SHM system for their bridges. There are 

multiple bridges in Iowa that have been “fitted” with the system, and there are considerable data 

collected to better identify bridge performance.  

Given the maturity and effectiveness of the structural health monitoring system for bridges 

developed and validated over a significant time period in Iowa and other states to date, the 

timing may be favorable for the Iowa DOT to consider implementing a long-term SHM system 

program. 

The most significant decisions for the Iowa DOT include developing a comprehensive 

implementation process, including staffing. Additional needs would require investment in 
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hardware and software, as well as developing an overall effective process to utilize the SHM 

system. These are outlined in more detail in the last chapter of this report. 
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1. BACKGROUND 

Beginning about 20 years ago, the Bridge Engineering Center (BEC) at Iowa State University 

(ISU) started working toward developing and evolving an autonomous structural health 

monitoring (SHM) system to assess the safety of bridge structures and to determine the 

remaining life of bridges. The evolution of the SHM system includes monitoring of more than 15 

bridges, with additional bridge projects in progress and planned.  

While there are other structural health processing systems in the US, we believe the ISU SHM 

system is the most comprehensive and effective system to date. An important aspect of the 

success of the SHM system is due to the strong partnership between the Iowa Department of 

Transportation (DOT) and the BEC.  

Given the maturity and effectiveness of the developed SHM system validated over a significant 

time period in cooperation with the Iowa DOT and other states, the timing may be favorable for 

the Iowa DOT to consider implementing a permanent bridge SHM system program. If so, the 

most significant decisions for the Iowa DOT would include developing a comprehensive 

implementation process, including staffing.  

Additional needs would require investment in hardware and software, as well as developing an 

overall effective process to utilize the SHM system. Subsequent chapters of this implementation 

document provide information documenting past and current research related to structural health 

monitoring of bridges in Iowa.  
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2. EVOLUTION OF THE DEVELOPMENT OF AN AUTOMATED SHM SYSTEM IN 

IOWA 

The Iowa DOT Office of Bridges and Structures continues to provide safe travel conditions on 

state bridges while maintaining critical infrastructure assets. SHM provides an effective and 

efficient process to maintain the bridge inventory. The Iowa DOT partnered with the ISU BEC in 

conducting research related to developing and implementing SHM system processes. Brief 

information follows regarding several SHM projects in Iowa in cooperation with the Iowa DOT 

and the ISU BEC.  

2.1 US 30 Bridge over the Skunk River 

The first comprehensive SHM bridge project using continuous monitoring was in 2007. The 

Iowa DOT, in partnership with the BEC, began the process of implementing continuous 

monitoring of bridges to assure effective and safe bridge performance. The US 30 Bridge over 

the Skunk River in Ames, Iowa provided a good proving ground and a convenient location. 

Implementing full-scale testing in developing processes for SHM applications, including 

hardware and software development, were critical in evolving the SHM systems and processes.  

First Generation SHM Bridge in Iowa  

The US 30 Bridge has three spans with two equal outer spans (97.5 ft) and a longer middle span 

(125 ft), a width of 30 ft, and a skew of 20 degrees (see Figure 1).  

 

Figure 1. US 30 Bridge over the Skunk River in Ames, Iowa 

The superstructure consists of two continuous welded steel plate girders, 19 floor beams, and two 

stringers that support a 7.25 in. thick cast-in-place concrete deck. The bridge supports are pinned 

at the west pier and are roller-type supports at the east pier and at each of the abutments. The 

abutments are stub reinforced concrete and the piers are monolithic concrete.  

This type of bridge is prone to cracks developing in critical connection regions and is typically 
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described as a fracture-critical bridge (FCB). The developed FCB SHM system enables bridge 

owners to remotely monitor FCBs for gradual or sudden damage formation. This SHM system 

utilized Fiber Bragg Grating (FBG) fiber optic sensors (FOSs) to measure strains at critical 

locations.  

The strain-based SHM system was trained with measured performance data to identify typical 

bridge response when subjected to ambient traffic loads, and that knowledge is used to evaluate 

newly collected data. At specified intervals, the SHM system autonomously generates evaluation 

reports that summarize the current behavior of the bridge. The evaluation reports are collected 

and distributed to bridge owners for interpretation and decision-making.  

The SHM system consists of two main categories: an office component and a field component 

(see Figure 2).  

     

Figure 2. First generation SHM system for bridge monitoring: equipment/hardware (left) 

and fiber optic sensor (FOS) (right) 

The office component has a structural analysis software program that is used to generate 

thresholds that identify isolated events. The field component includes hardware and field 

monitoring software that performs data processing and evaluation. The hardware system consists 

of sensors, data acquisition equipment, and a communication system backbone. The field 

monitoring software will operate autonomously with minimal user interaction.  

In general, the SHM system features two key uses. First, the system can be integrated into an 

active bridge management system that tracks usage and structural changes. Second, the system 

helps owners to identify overload occurrence, damage, and deterioration. Online power service is 

provided at the bridge site.  
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Damage Detection Algorithm 

In this work, a previously-developed, statistical-based, damage-detection approach was validated 

for its ability to autonomously detect damage in bridges. The damage-detection approach uses 

statistical differences in the actual and predicted behavior of the bridge caused under a subset of 

ambient trucks. The predicted behavior is derived from a statistics-based model trained with field 

data from the undamaged bridge (not a finite element model). The differences between actual 

and predicted responses, called residuals, are then used to construct control charts, which 

compare undamaged and damaged structure data. 

Validation of the damage-detection approach was achieved by using sacrificial specimens that 

were mounted to the bridge and exposed to ambient traffic loads and simulated actual damage-

sensitive locations. Different damage types and levels were introduced to the sacrificial 

specimens to study the sensitivity and applicability. 

The damage-detection algorithm was able to identify damage, but it also had a high false-

positive rate. An evaluation of the sub-components of the damage-detection methodology and 

methods was completed to improve the approach.  

Several of the underlying assumptions within the algorithm were being violated, which was the 

source of the false-positives. Furthermore, the lack of an automatic evaluation process was 

thought to potentially be an impediment to widespread use. Recommendations for the 

improvement of the methodology were developed and preliminarily evaluated. These 

recommendations are believed to improve the efficacy of the damage-detection approach.  

2.2 SHM Pooled Fund Project  

A Federal Highway Administration (FHWA) Transportation Pooled Fund (TPF) project (with 

the Iowa DOT taking the lead) was implemented on the strength of the US 30 Bridge over the 

Skunk River project. Multiple DOTs and several federal agencies, including the FHWA and the 

U.S. Department of Agriculture (USDA) Forest Products Laboratory (FPL), were involved.  

Three bridges were included in the pool fund project, with one bridge each in Iowa, Illinois, and 

Wisconsin. (A brief description of the bridge site for each of the bridges that were tested are 

provided later in this chapter). The multiple projects provided an important platform to continue 

to enhance the SHM system. Information below provides a summary of further development and 

evolution of the system through the pooled fund project. 

Bridge Engineering Condition Assessment System (BECAS) 

As noted above, the three additional bridge research projects funded by the pooled fund study 

provided opportunities to enhance the SHM system and further evolve the overall processes. The 

BEC developed advanced SHM software called the Bridge Engineering Condition Assessment 

System (BECAS).  
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The software eliminates the subjectivity of current inspection approaches, increases evaluation 

frequency from once every two years to continuously, virtually removes human error, bias, and 

limitations, and provides feedback that can be used to perform proactive, rather than reactive, 

preventive maintenance. An overview of the major components of BECAS, including the 

hardware and software suite, follows. 

The BECAS hardware consists of off-the-shelf components integrated to form a network of 

state-of-the-art sensors, data collection equipment, data storage, and an N-tier data processing 

hub.  

Three sensor types make up every BECAS installation: resistance strain sensors, temperature 

sensors, and global positioning system (GPS) signal collectors. In addition, sensors of multiple 

types can be integrated into the system (tilt, deflection, corrosion, acceleration, etc.) depending 

on any unique monitoring needs. The sensors are connected to an on-site data logger that has 

integrated filtering capabilities.  

With read speed capabilities that approach 1,000 Hz, the data logger has the ability to collect the 

data as needed (high speed data collection is needed for vehicle identification and classification). 

On-board filtering capabilities added to each system helps to ensure that measurement noise is 

minimized.  

To temporarily store, initially process, and then transfer the data to the main data processing hub, 

a mid-level desktop PC is connected to the data logger via wired Ethernet. An IP-based video 

camera is also installed at each BECAS site. This camera is set up to record (and temporarily 

store) a live video feed of the bridge (including traffic crossing the bridge).  

One final key piece of the on-site hardware is an IP-based power switch. This power switch has 

multiple features that make it a useful part of the system. For example, the power switch allows 

remote users to power up or down individual system components from anywhere in the world. 

Second, in the event that the on-site system loses its connection with the internet, the power 

switch automatically reboots the on-site cellular modem until the system comes back on-line 

fully.  

Once transferred from the bridge to the office, the data are stored at a networked location. Then, 

an N-tier system of computers automatically detects the presence of new data and processes the 

data. To create redundancy in the system and provide a lower-cost method of analyzing the data 

in real-time, a typical BECAS processing architecture consists of a workstation-class PC (the 

parent) plus one or more lower cost desktop PCs (the children). Given that currently available 

computers have multiple cores (i.e., processing threads), the BECAS described subsequently will 

parallel-process multiple files at once.  
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Demonstration Sites 

All three bridges (Iowa DOT, Illinois DOT, and Wisconsin DOT) contain similar 

instrumentation including strain and temperature sensors. The data were collected at the bridge 

sites that include communication software and hardware to transmit the strain data to the home 

site (in this case, at ISU). The Iowa and Illinois bridges used solar power at the site and the 

Wisconsin bridge provided power directly at the site. 

I-80 EB Iowa Bridge over Sugar Creek 

The I-80 Bridge crosses the Sugar Creek near a weigh station in Dallas County, Iowa (see Figure 

3).  

 

Figure 3. I-80 EB Bridge in Iowa over Sugar Creek 

The bridge has three spans with an overall span of 150 ft, with two end spans with spans of 61 ft 

and a center span of 78 ft. The bridge is a three-span continuous steel beam structure. This type 

of bridge is vulnerable to fatigue cracking in the vicinity of the welded cover plates. The bridge 

width is 38 ft, with a skew of 15 degrees. The bridge has a 7.5 in. thick concrete slab and steel 

girder W35x135 for exterior spans and W35x150 for the interior span.  

Both abutments are stub concrete and the two piers are open two column concrete cantilever. 

They are supported on piling. The near abutment bearings are sliding metal plates. The bearings 

over the far abutment are fixed. The other bearings are rockers. 

Figure 4 shows typical hardware associated with the SHM system.  
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Figure 4. Field site and office site equipment for typical SHM system 

The sensor bridge data are collected at the bridge site and stored in cabinets. The hardware at the 

bridge site includes data loggers and communication devices to transfer data to the office 

location for data processing.  

Solar power may be constructed near the bridge site or power lines may be hooked up to it. If 

solar power is used, batteries need to store the power (see Figure 5). 

       

Figure 5. Solar panels providing power to bridge sensors (left) and battery storage cabinets 

under the bridge (right) 

Figure 6 shows a schematic plan view and cross-section view of the I-80 Bridge in Iowa over 

Sugar Creek.  
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Figure 6. Instrumentation layout plan for girder gauges on I-80 EB Bridge over Sugar 

Creek 

The girder sensor locations on the bridge are shown on the plan view and on a cross-section view 

for the various data plot locations. Some girder locations have a single strain gauge and the 

others have top and bottom flange gauges.  

I-280 EB Illinois Bridge over US 67 

The I-280 EB Bridge crosses US 67 near Milan, Illinois (see Figure 7).  

   

Figure 7. I-280 EB Bridge in Illinois over US 67 near Milan 

The structure is a two-span, continuous-steel stringer, multi-girder bridge. The overall span 

length is 208 ft 7 in. out-to-out of slab; each of the two spans are 103 ft. The bridge deck width is 



9 

44.7 ft with a deck slab thickness of 8 in. The bridge is on a 15-degree skew with a curve. The 

substructure is cast-in-place reinforced concrete units. The abutments are supported on concrete 

piles, and the piers are supported on spread footings on bedrock. 

Figure 8 shows typical hardware associated with the SHM system, similar to the I-80 Bridge in 

Iowa.  

        

Figure 8. Similar field site with field equipment and solar power for typical SHM system on 

the I-280 EB Bridge in Illinois over US 67 near Milan 

As noted for the I-80 Iowa Bridge, solar panels provided power for the sensors on the I-280 

Bridge. The schematic plan and cross-section view for the I-280 Bridge is shown in Figure 9.  
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Figure 9. Instrumentation layout plan for girder gauges on I-280 EB Bridge over US 67 

near Milan, Illinois 

The sensor layout on the girders were arranged similar to the I-80 Bridge over Sugar Creek in 

Iowa.  

US 151 NB Wisconsin Bridge over County Highway H 

The US 151 bridge north of Dubuque, Iowa and Kieler, Wisconsin crosses County Highway H in 

Wisconsin. The overall span length is 127 ft. The structure is a three-span, prestressed girder 

bridge. The center span is 59 ft and each of the two outer spans are 42 ft long. The out-to-out 

width of the bridge deck is 43 ft, and the bridge deck is 9 in. in depth. The bridge is constructed 

on a curve. The two piers are supported on spread footings and both abutments are supported on 

HP 10x42 steel piles.  

Figure 10 includes views of the bridge, and Figure 11 shows typical hardware associated with 

collecting, processing, and sending data to the office for final processing. 
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Figure 10. US 151 NB Wisconsin Bridge over County Highway H 

       

Figure 11. Typical hardware equipment  

Some of the typical equipment are shown in Figure 11 similar to the other two bridges. Unlike 

the other two bridges, electrical power service was supplied for the field equipment. Figure 12 

shows the cross-section view of the bridge and the plan view with the layout of the strain sensors 

on the superstructure.  
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Figure 12. Instrumentation layout plan for girder gauges on US 151 NB Bridge over 

County Highway H in Wisconsin 
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3. IMPLEMENTATION PROJECT SITE DESCRIPTIONS 

The Iowa DOT provided funding to the BEC for SHM monitoring of two additional bridges: the 

I-80 Cherry Creek Bridge near Newton, Iowa, and the US 65 (Oak Street) Iowa River Bridge in 

Iowa Falls. 

3.1 I-80 Bridge WB over Cherry Creek near Newton, Iowa  

The Cherry Creek Bridge on I-80 in Iowa is located in Jasper County approximately 1.2 miles 

west of junction IA 14. This bridge is a 158 ft x 30 ft steel beam structure built in 1962 carrying 

westbound I-80 over Cherry Creek and a waterway. The bridge is a three-span continuous steel 

girder structure and has a skew of 24 degrees. Both abutments are integral concrete and are 

supported on steel piling on rock. The piers are steel pile bents encased in a concrete wall with 

concrete caps. The pier bearings are fixed. This type of superstructure is vulnerable to fatigue 

cracking in the vicinity of the welded cover plates. The deck is portland cement concrete (PCC) 

overlaid with dense low-slump concrete in 1981. Both approaches are paved with PCC. Figure 

13 shows views of the bridge. 

 

 

Figure 13. I-80 WB Bridge over Cherry Creek  

Overall Monitoring Process 

The principal components for the bridge associated with the SHM system include a high-speed 

data logger, desktop-class PC (to control data acquisition), Ethernet switch and/or Ethernet 

router, various communication equipment including a 4G cellular modem, internet-based 

camera, land line power source, and workstation-class PC (for data analysis and strain and 

temperature sensors). Figure 14 shows equipment and sensors. 
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Figure 14. Field hardware and components: typical hardware for the SHM system (top), 

bridge deck strain gauges (center left), steel girder strain gauges (center right), and cabinet 

containing data and communication under the bridge site with power provided at the site 

(bottom) 
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The basic instrumentation plan included 56 strain sensors strategically placed throughout the 

superstructure, with eight strain sensors placed on the bottom of the bridge deck and 48 strain 

sensors placed on the top and bottom flange locations at seven cross sections, and three 

temperature sensors. Figure 15 shows the layout of the strain sensors on the bridge 

superstructure.  

 

Figure 15. Plan view of the layout of strain sensors on the steel superstructure elements and 

sensors on the bottom of the concrete deck 

The SHM system was trained and calibrated following established protocols. As appropriate, the 

various software applications mentioned above were installed and site-specific configurations 

established. 

3.2 US 65 (Oak Street) over the Iowa River in Iowa Falls, Iowa  

The recently constructed US 65 Iowa River Bridge in Iowa Falls (Hardin County) is a steel arch 

bridge with a span of 288.5 ft with a width of 42 ft. The bridge carries traffic over the Iowa River 

on the south side of the Iowa Falls downtown area. The deck is PCC with a 5 ft 2 in. sidewalk 

and an 11 ft 10 in. multi-use trail. Two lanes of traffic are carried each, northbound and 

southbound. The steel arch is supported at both ends of the bridge with a skewback foundation 

using a micropile foundation. The north and south abutments for the roadway also use a 

micropile foundation (see Figure 16). 
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Figure 16. US 65 Bridge over the Iowa River in Iowa Falls: view toward the north near 

downtown (top left), profile view over the Iowa River looking east (top right), and lower 

level of the superstructure of the bridge including floor beams, stringers, and deck 

(bottom) 

Overall Monitoring Process 

The instrumentation components were quite diverse, primarily due to the complexity of an arch 

bridge and the interest on behalf of the Iowa DOT to test various sensors for structural, 

environmental, and security data. 

Sensor data that contribute to creating a more resilient structural system will provide better life 

service performance. Some of the sensors implemented on the bridge include monitoring 

moisture inside the steel arch rib to avoid corrosion, relative movement between the abutments 

of the bridge, arch rib and hanger forces, and sensors for many other superstructure elements. 

The various sensors provided data such as wind speed and direction, bridge deck icing potential, 

and temperature and humidity, given that winter maintenance practices can contribute to efficient 

use of de-icing chemicals and reduction of bridge deterioration, increase public safety due to 

timely application, and reduce the impacts on the environment by using less chemicals if 

possible. Additionally, sensors monitored the potential for corrosion in the deck, the substructure 

at expansion joints, and micropiles and concrete anchors. 

Data processing is an important part of the SHM system. A separate data logger was used for 

each application. Measurements from the fast-read gauges were completed using a Campbell 
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Scientific, Inc. CR9000X data logger, whereas measurements from the slow-read gauges were 

completed using a Campbell Scientific CR1000 data logger. 

In addition to the loggers, other accessory pieces of equipment were needed to complete the data 

recording and processing. A Campbell Scientific, Inc. AVW200, 2-Channel Vibrating-Wire 

Interface was required for the data loggers to collect data from vibrating wire instrumentation 

such as rock bolt strain sensors and tiltmeters. Also, the Campbell Scientific, Inc. AM 16/32B 

Relay Multiplexer was used to increase the number of sensors that could be measured by the 

CR1000 data logger.  

An HP Compaq 6200 Pro Microtower desktop computer and Campbell Scientific Inc.’s RTDAQ 

software were used on site to collect, store, and transmit the data from the data loggers. The 

software is specifically intended for high-speed data acquisition. 

All of the equipment, along with other miscellaneous items (modem, Ethernet switch, battery 

backup, and power supplies), was housed in locked, waterproof cabinets mounted beneath the 

bridge on the south abutment wall near the southwest arch bearing. A home base, which included 

PCs and other hardware, accepted and organized the field data. Those data were then processed 

to provide the detailed bridge performance results. Figures 17 and 18 show the conceptual and 

actual equipment for the SHM system on the Iowa Falls Bridge. 

 

Figure 17. Structural monitoring system equipment and path to receiving the data at the 

home base (i.e., office) 
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Figure 18. SHM system components associated with the US 65 Bridge over the Iowa River: 

data collected at the bridge site (top left), data logging equipment (top right), additional 

hardware (middle left), organizing home base to connect to ISU (middle right), strain 

gauges on hangers (bottom left), and bridge deck sensor placed in the deck (bottom right) 

Figure 19 shows the locations of strain gauges on hanger members and the arch rib.  
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Figure 19. Locations of hanger members and the arch rib members on the bridge 

Strain gauges on the lower portion of the bridge include those on the stiffening girder, floor 

beam, and stringers (Figure 20). 

 

Figure 20 Strain sensor locations for the stiffening girder, floor beam, and stringer on the 

lower portion of the bridge superstructure 
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4. IMPLEMENTATION SITE RESULTS 

Some representative SHM data for the I-80 Cherry Creek Bridge and the US 65 Iowa River 

Bridge are presented in this chapter. It is worth noting that there are three additional bridges 

coming on line in the near future that are part of Iowa DOT research and implementation 

projects. The bridges include the I-35 SB and I-35 NB bridges over the South Skunk River. 

Additionally, another bridge will come online in the near term on I-74 over the Mississippi 

River.  

The SHM data provide significant information for assessing bridge condition in real time. A 

brief list of observations, as follows, are useful for bridge engineers and provides some general 

detail of how the data may be of use.  

 Identify the percentage of truck events within a driving lane (e.g., the driving lane is typically 

very large compared to other lanes on a bridge). 

 Identify the highest stressed location on a girder (which typically occurs in a driving lane). 

Inspections can be performed more effectively with these data. 

 Identify bridge usage (based on one-minute maximum, minimum, and strain range). These 

data allow engineers to address fatigue in the bridge, particularly for fracture-critical bridges. 

 Identify threshold exceedances, which can show that large strain events do occur with three 

or more trucks on a bridge at the same time. During construction activity, these can result in 

closing one of the normal traffic lanes. 

 Identify load ratings with the collected data in real time, and the data can show changes in the 

load rating over time. 

 Identify critical areas on the bridge using the long-term data. As an example, the strain data 

could alert the bridge engineer that a bearing is frozen or partially frozen. Over time, it is 

possible to create excessive stresses at the abutment. 

4.1 I-80 near Newton, Iowa (Cherry Creek Bridge) 

The Cherry Creek Bridge project provided further opportunities to fine-tune and expand the 

SHM system. This was the sixth bridge implemented using BECAS by the Iowa DOT. 

Identifying damage in the bridge was also an objective for monitoring this bridge. As the SHM 

system evolved, the intent was to improve the functionality of the system. 
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Selected Data  

To demonstrate the type of data collected with the SHM system, several bridge girders were 

selected to show representative data plots. An arbitrary time-period of data collection was used 

to present data plots that began September 23, 2016. The data include 187,756 driving lane 

trucks detected, 12,643 passing lane trucks detected, and 137,000 load ratings calculated. A brief 

discussion of the results is presented below. 

Figure 21 shows data that represent bridge usage or, more technically, helps bridge engineers to 

assess fatigue in the bridge.  

 

Figure 21. I-80 Cherry Creek Bridge usage (number) vs. microstrain 

The plots are based on 1-minute maximum, minimum, and strain range, which are particularly 

useful for monitoring fracture-critical bridges.  

The plot in Figure 22 shows the bridge load rating in real time.  
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Relative date 

Figure 22. I-80 Cherry Creek Bridge load rating 

The data are in the form of average, minimum, maximum, and linear maximum. The chart 

indicates that, over the time period associated with this plot, the load rating decreased 

(~0.01/year).  

In general, the data plots below represent the stability, or lack thereof, of the bridge members’ 

behavior over time. The locations on the bridge are in the first interior girder from the south and 

in the east end span of the bridge. Using probabilistic and statistical methods, the charts use 

strain data processed using a probabilistic method on a control chart. The three plots represent 

three separate locations on the bridge. The three data point locations on the bridge, E2B, F2B, 

and G2B, are shown in Figure 23, top to bottom.  
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Relative time 

 
Relative time 

 
Relative time 

Figure 23. Behavior change – Beam 2, east end span, abutment bearing lock-up 

Notice that, overall, the data show abnormal behavior because of the sporadic high number of 

test violations. The data points along the bottom of the plots at 0 represent the expected behavior. 
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The out-of-range data points suggest some potential structural issue. Oftentimes, a bridge bearing 

may be “frozen.” 

4.2 US 65 over the Iowa River (Oak Street Bridge) 

For this project, development and finalization of general hardware and software components for 

a bridge SHM system were implemented. The project was initially developed as a demonstration 

installation on the Iowa Falls Arch Bridge. The goal was to advance the SHM system to be ready 

for mainstream use by the Iowa DOT Office of Bridges and Structures.  

The hardware system focused on using off-the-shelf sensors that could be read in either fast or 

slow modes, depending on the desired monitoring metric. As hoped, the installed system 

operated with very few problems.  

In terms of communications—in part due to the anticipated installation of the SHM system on 

the I-74 bridge near the Quad Cities between Iowa and Illinois that was currently in progress—a 

hardline digital subscriber line (DSL) internet connection and grid power were used. During 

operation, this system transmits data to a central server location where the data are processed and 

then archived for future retrieval and used via the described database, visualization, and retrieval 

tools.  

Through the US 65 (Oak Street) Bridge over the Iowa River demonstration project, it was 

observed that the biggest hurdle to widespread use of a system like this is storage of historical 

data. The data are being collected at relatively high-speed rates, and a very large volume of data 

are collected on a daily basis. Although, from an operational perspective, this is not an 

insurmountable problem, there are difficulties associated with physically storing this much 

information. As a result, for future installations, it is recommended that the Iowa DOT develop a 

policy regarding how long historical data should be retained. 

Selected Data  

To demonstrate the format and usefulness of the data collected with the SHM system, data are 

shown below. Figure 24 shows the real-time strain in the concrete bridge deck at one location 

(Deck Strain 2).  
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Figure 24. Iowa Falls Bridge data website sensor timespan results 

Conversion of the strain data provides insight into the bridge deck performance. Figure 25 shows 

the south abutment camera live view underneath the bridge, which also houses the equipment 

cabinets that store the data collection system on-site, and the live traffic flow is viewed using the 

Roadside camera display located near the southbound lane. 
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Figure 25. Iowa Falls Bridge data website camera selection 

A third camera display, Arch Interior, is contained within the southwest base of the arch and is 

focused on the area of potential moisture build-up near the bottom of the arch. Real-time images 

provide a different type of important data to assess critical bridge elements.  
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5. RECOMMENDATIONS FOR LONG-TERM SHM IMPLEMENTATION  

The Iowa DOT has already invested in implementing an SHM system for their bridges. There are 

multiple bridges in Iowa that have been “fitted” with the system, and there are considerable data 

collected to better identify bridge performance. Should the Iowa DOT have an interest in 

developing a more formal monitoring process than what has been developed to date, BEC would 

be interested in helping in any way. 

Brief information about how the data may be useful to the Iowa DOT bridge inventory and some 

ideas are provided below.  

5.1 Integration of SHM Data into a Holistic Bridge Preservation Plan 

In general, it is already clear that bridge data collected from the SHM system has provided 

valuable information and insight. Bridge engineers will be able to develop ideas on how to use 

the data to understand bridge performance.  

For example, the SHM system data could provide insights into the real-time data versus the 

actual design process used. Critical elements on a bridge could be evaluated using real-time data 

versus expected design behavior, thus gaining a better perspective. Furthermore, the real-time 

data can identify anomalies on the bridge (such as fatigue cracks or a bad bridge bearing), and 

alert bridge engineers that the bridge is not performing correctly.  

Once a repair is made of an anomalous problem, subsequent real-time data can determine if the 

repair is effective. An important aspect of managing bridge performance (usually done by 

inspections of bridges every several years) is to develop a bridge rating to assure safety. Using 

the SHM system data, the bridge rating is continuously collected.  

More specifically, it would be useful to refer to the bulleted list of observations at the beginning 

of Chapter 4. Implementation Site Results, as repeated here:  

 Identify the percentage of truck events within a driving lane (e.g., the driving lane is typically 

very large compared to other lanes on a bridge). 

 Identify the highest stressed location on a girder (which typically occurs in a driving lane). 

Inspections can be performed more effectively with these data. 

 Identify bridge usage (based on one-minute maximum, minimum, and strain range). These 

data allow engineers to address fatigue in the bridge, particularly for fracture-critical bridges. 

 Identify threshold exceedances, which can show that large strain events do occur with three 

or more trucks on a bridge at the same time. During construction activity, these can result in 

closing one of the normal traffic lanes. 
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 Identify load ratings with the collected data in real time, and the data can show changes in the 

load rating over time. 

 Identify critical areas on the bridge using the long-term data. As an example, the strain data 

could alert the bridge engineer that a bearing is frozen or partially frozen. Over time, it is 

possible to create excessive stresses at the abutment. 

This list could serve to help bridge engineers better understand the value of the data collected.  

5.2 Establishment of a Bridge Monitoring “Command Center” 

A focus on data interpretation and quick response to bridge issues is important for a successful 

program. One possible format might be to create a new focus area (or similar) within the Iowa 

DOT. 

I. Review and use of data 

1. Daily 

2. Weekly 

3. Monthly 

4. Bi-annually 

Establishing a regular and reliable process will be critical.  

II. Process and procedure of reacting to issued alerts 

1. Analytics and response 

2. Communication 

Given the availability of instantaneous data, there is an opportunity to respond appropriately 

to anomalous data events. The software should include a warning in such cases. Some 

assigned bridge personnel should be as follows. 

Background 

Over about the last 20 years, the BEC has developed a comprehensive bridge SHM system in 

collaboration with the Iowa DOT. The Iowa DOT is interested in implementing a sustainable 

process to reliably assess Iowa DOT bridge assets in a more effective and efficient manner. The 

BEC would be pleased to submit a formal research proposal to the Office of Bridges and 

Structures to continue this work.  
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Staffing Format and Needed Personnel  

There will be some challenges in implementing the SHM System Plan, particularly with regard 

to staffing models and other resources. The following provides brief general comments on how 

the Iowa DOT might achieve their objectives. 

1) Hire consultants 

Consultants in this technical area are very limited, and given the complexity of the SHM 

system(s) and processes, this approach would likely only be able to handle some of tasks 

required to implement a system completely.  

2) Hire additional Iowa DOT staff 

The Iowa DOT may not likely have the appropriate staffing to implement the SHM system 

process that the BEC has developed. They would need to hire additional staff with appropriate 

background, but that would be challenging given the complexity of the SHM system and data 

processing. Additionally, an investment in hardware and software would be required.  

3) Expand the scope of the current existing programmatic relationship between the Iowa DOT 

and ISU  

ISU has already developed a programmatic bridge research program with the Iowa DOT, and 

ISU has already implemented SHM on multiple bridges for the Iowa DOT. ISU would be able to 

use some of their current bridge staff and add some additional staff as well, depending on 

feedback from the Iowa DOT. The experience gained already by the BEC and the Iowa DOT 

would allow a very efficient and effective SHM process.
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APPENDIX A: SAMPLE SHM SYSTEM BRIDGE PERFORMANCE DATA 

An example of representative data that may be produced by the SHM system for use by the Iowa 

DOT bridge engineers to better understand the bridge performance follows.  

 

Office of Bridges and Structures 

Bridge Maintenance and Inspection Unit 
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STRUCTURAL MONITORING SUMMARY DATA 
 

General Information 
Date:  2/23/2016 
Monitoring period:  7/9/2015 to 2/23/2016 
Maximum bridge temperature:  98.8 degrees Fahrenheit 
Minimum bridge temperature:  1.7 degrees Fahrenheit 
Number of single truck events:  68,158 (driving lane), 5,066 (passing lane) 

 
General Behavior Information 

Maximum strain:  268.4   Location:  D2_BF Usage:  33,667,224 ue/yr 
Minimum strain:  -229.0   Location:  D2_BF Usage:  -9,524,644 ue/yr 
Maximum strain range:  329.9  Location:  D2_BF Usage:  43,200,576 ue/yr 

 
Threshold Exceedance Summary 

Total number of threshold exceedances 
  Maximum:  557 
  Minimum:  190 
  Range:  158 

Location of highest number of exceedances 
  Maximum:  D4_BF 
  Minimum:  M2_BF 
  Range:  M1_BF 
 
Load Rating Summary 

Initial Average Load Rating:  1.602 Critical Section:  Exterior Girder, positive M region 
Final Average Load Rating:  1.608 Critical Section:  Exterior Girder, positive M region 

  Average Load Rating Rate of Change: -0.003 per year 
Maximum Load Rating:  1.79  Critical Section:  Exterior Girder, positive M region 
Minimum Load Rating:  1.60  Critical Section:  Exterior Girder, positive M region 

See additional details 
 
 
Behavior Change Summary 

F-Test Results 
  Maximum Violations:  164 Location:  A2_BF 

Strain Range Results: 
  Maximum Violations:  2  Location:  E3_BF 
 

Behavior at Select Locations: 
  Location Observed Behavior                                                                                             _ 
  A2_BF  High strains when temperatures are below freezing 
  E3_BF  Higher ranges of behaviors when temperature exceed freezing 
  A4_BF  Abutment bearing appears to lock-up at lower temperatures 
  A5_BF  Abutment bearing appears to lock-up at lower temperatures 
   See additional details 
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SUMMARY OF MONITORING OBSERVATIONS 

During the monitoring period over 70,000 single lane events were identified with approximately 

93% of the events occurring in the driving lane. It appears that the highest stressed location is 

girder number 2 (mostly under the driving lanes) and that the maximum stresses occur in the 

positive moment region. Maximum measured stresses in the highest stress region were measured 

to be just under 8 ksi. Maximum stress range at the maximum stress range location were 

measured to be just greater than 9.5 ksi. Maximum negative stress at this location (note that this 

a commonly positive bending location) were measured to be approximately -6.6ksi. 

As a general measure of bridge usage, the 1-minute maximum, minimum, and strain range were 

collected throughout the monitoring period. These have been summed and then normalized to a 

yearly value. At the maximum strain locations, the normalized usage was Maximum=33,667,224 

ue/yr, Minimum=9,524,644 ue/year, and Range=43,200,576 ue/year. As this is the first 

monitoring period no basis for comparison can be made. During subsequent monitoring periods 

these values will be reported to track changes in bridge usage. 

During the monitoring period there were almost 900 threshold exceedances observed. The 

majority of these were due to the initial settings being too low. However video corroboration 

indicates that at times large strain events do occur with three or more trucks are on the bridge at a 

time. At various times during the monitoring period atypically configured trucks were observed 

to have crossed the bridge. These atypical trucks were common sources of threshold 

exceedances. For a period of time during the monitoring period there was construction activity 

just “downstream” of the bridge. These activities sometimes resulted in the closing of one of the 

normal traffic lanes.  

The initial and final load ratings are essentially the same (approximately 1.61). Over the 

monitoring period the load rating was estimated to be between 1.60 and 1.79. In all cases, the 

load rating was controlled by the exterior girder positive moment capacity. The exterior girder is 

likely carrying a higher than anticipated load due to the presence of the relatively large barrier 

rail which increases the total stiffness at the bridge edges. This behavior is not one commonly 

assumed during design. The fact that the highest stress region (mentioned above) is not an 

exterior girder, indicates that the location of the normal travel lane is not inducing large loads in 

the exterior girders. Should the traffic pattern change, this behavior will certainly change. Over 

the monitoring period, the load rating tended to decrease slightly – reducing at a rate of 0.008 per 

year. However, during the monitoring period no reduction in capacity (due to loss of section, 

etc.) was taken into account. 

The behavior of the bridge was generally consistent throughout the monitoring period with one 

exception – the west abutment. It has been consistently observed that the west bearings 

transitions from a “free” condition to a more “fixed” condition as the temperature drops. Even 

more, once the temperature drops below freezing the bearings tend to display a marked increase 

in lock-up. While this is not likely causing any significant problems, this behavior is not as 

intended and if allowed to continue or worsen, may result in excessive stresses at the abutment.  

Expert Opinion Factor: 1.25
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APPENDIX B: SHM IMPLEMENTATION PUBLICATIONS FROM BEC TO DATE 

A list of Bridge Engineering Center SHM Implementation publications to date is included in this 

appendix. These are listed newest to oldest, with the publication years in boldfaced type, for each 

of the categories below. 

Reports 

Phares, B., S. Jayathilaka, Y.-J. Deng, L. Greimann, and T. Wipf. 2020. Development of a 

Structural Health Monitoring System to Evaluate Structural Capacity and Estimate 

Remaining Service Life for Bridges. Bridge Engineering Center, Iowa State University, 

Ames, IA. https://bec.iastate.edu/research/in-progress/development-of-a-structural-

health-monitoring-system-to-evaluate-structural-capacity-and-estimate-remaining-

service-life-for-bridges/. 

Lu, P. and B. Phares. 2018. Integration of Structural Health Monitoring into Multilayer 

Statewide Bridge Maintenance and Management Practices – SHM-Facilitated Condition-

Based Maintenance (SHM-CBM) Prioritization System. Midwest Transportation Center 

and Bridge Engineering Center, Iowa State University, Ames, IA. 

https://intrans.iastate.edu/app/uploads/2019/02/SHM_multilayer_statewide_bridge_mtc_a

nd_mgmt_w_cvr.pdf. 

Phares, B. M., J. Dahlberg, and N. Burdine. 2015. Implementation of a Pilot Continuous 

Monitoring System: Iowa Falls Arch Bridge. Bridge Engineering Center, Iowa State 

University, Ames, IA. 

https://intrans.iastate.edu/app/uploads/2018/03/Iowa_Falls_Arch_Bridge_w_cvr1.pdf. 

Phares, B. M., T. J. Wipf, P. Lu, L. F. Greimann, and M. Pohlkamp. 2010. An Experimental 

Validation of a Statistical-Based Damage Detection Approach. Bridge Engineering 

Center, Iowa State University, Ames, IA. 

https://intrans.iastate.edu/app/uploads/2018/03/shm_validation_report_w_cvr.pdf. 

Wipf, T. J., B. M. Phares, J. D. Doornink, L. F. Greimann, and D. L.Wood. 2007. Evaluation of 

Steel Bridges (Volume I): Monitoring the Structural Condition of Fracture-Critical 

Bridges using Fiber Optic Technology. Bridge Engineering Center, Iowa State 

University, Ames, IA. https://intrans.iastate.edu/app/uploads/2018/03/steel-bridge-

vol1.pdf. 

Phares, B. M., T. J. Wipf, Y-S. Lee, and J. D. Doornink. 2007. Evaluation of Steel Bridges 

(Volume II): Structural Health Monitoring System for Secondary Road Bridges. Bridge 

Engineering Center, Iowa State University, Ames, IA. 

https://intrans.iastate.edu/app/uploads/2018/03/steel-bridge-vol2.pdf. 

Phares, B. M., T. J. Wipf, L. F. Greimann, and Y. S. Lee. 2005. Health Monitoring of Bridge 

Structures and Components Using Smart-Structure Technology: Volume 1. Wisconsin 

Highway Research Program, Madison, WI. 

https://minds.wisconsin.edu/bitstream/handle/1793/6915/WHRP05-

03_Final_Report_Volume_I.pdf?sequence=1&isAllowed=y. 

https://bec.iastate.edu/research/in-progress/development-of-a-structural-health-monitoring-system-to-evaluate-structural-capacity-and-estimate-remaining-service-life-for-bridges/
https://bec.iastate.edu/research/in-progress/development-of-a-structural-health-monitoring-system-to-evaluate-structural-capacity-and-estimate-remaining-service-life-for-bridges/
https://bec.iastate.edu/research/in-progress/development-of-a-structural-health-monitoring-system-to-evaluate-structural-capacity-and-estimate-remaining-service-life-for-bridges/
https://intrans.iastate.edu/app/uploads/2019/02/SHM_multilayer_statewide_bridge_mtc_and_mgmt_w_cvr.pdf
https://intrans.iastate.edu/app/uploads/2019/02/SHM_multilayer_statewide_bridge_mtc_and_mgmt_w_cvr.pdf
https://bec.iastate.edu/research/completed/implementation-of-a-pilot-continuous-monitoring-system-iowa-falls-arch-bridge/
https://bec.iastate.edu/research/completed/implementation-of-a-pilot-continuous-monitoring-system-iowa-falls-arch-bridge/
https://intrans.iastate.edu/app/uploads/2018/03/Iowa_Falls_Arch_Bridge_w_cvr1.pdf
https://intrans.iastate.edu/app/uploads/2018/03/shm_validation_report_w_cvr.pdf
https://intrans.iastate.edu/app/uploads/2018/03/steel-bridge-vol1.pdf
https://intrans.iastate.edu/app/uploads/2018/03/steel-bridge-vol1.pdf
https://intrans.iastate.edu/app/uploads/2018/03/steel-bridge-vol2.pdf
https://minds.wisconsin.edu/bitstream/handle/1793/6915/WHRP05-03_Final_Report_Volume_I.pdf?sequence=1&isAllowed=y
https://minds.wisconsin.edu/bitstream/handle/1793/6915/WHRP05-03_Final_Report_Volume_I.pdf?sequence=1&isAllowed=y
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Phares, B. M., T. J. Wipf, L. F. Greimann, and Y. S. Lee. 2005. Health Monitoring of Bridge 

Structures and Components Using Smart-Structure Technology: Volume 2. Wisconsin 

Highway Research Program, Madison, WI. 

https://minds.wisconsin.edu/bitstream/handle/1793/6915/WHRP05-

03_Final_Report_Volume_II.pdf?sequence=2&isAllowed=y. 

Journal Papers 

Seo, J., B. Phares, P. Lu, T. Wipf, and J. Dahlberg. 2013. Bridge Rating Protocol Using Ambient 

Trucks through Structural Health Monitoring System. Engineering Structures, Vol. 46, 

pp. 569–580. https://www.sciencedirect.com/science/article/pii/S0141029612004488. 

Lee, Y-S., B. Phares, T. Wipf, and F. Malhas. 2013. Structural Health Monitoring with an Active 

Data Management System for Secondary Road Bridges. ACI Structural Journal Special 
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