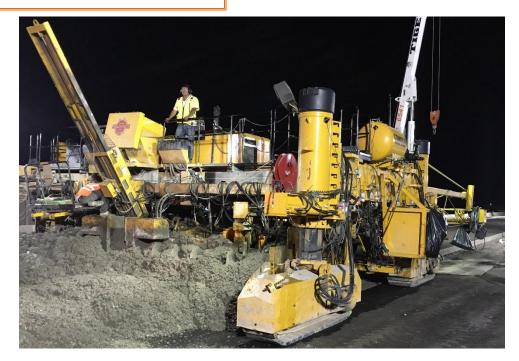


Tools to Improve PCC Pavement Smoothness During Construction (R06E)


Seeking widespread adoption of the realtime smoothness (RTS) technology by contractors and agencies who routinely construct PCC pavements will be achieved through:

- 1. Equipment Loan Program
- 2. Showcases
- 3. Workshops
- 4. Case studies/results Documentation
- 5. Specification Refinement
- 6. Marketing & Outreach

National Concrete Pavement Technology Center

FIELD REPORT: UTAH EQUIPMENT LOAN #8

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

INTRODUCTION

The Federal Highway Administration (FHWA) has contracted with the National Center for Concrete Pavement Technology (CP Tech Center) for *Implementation Support for Strategic Highway Research Program II (SHRP2) Renewal R06E Real-time Smoothness Measurements on Portland Cement Concrete Pavements During Construction*. One of the tasks included in this contract is equipment loans to contractors. This task involves facilitating the loan of real-time smoothness equipment for field trial use on 11 designated PCC pavement construction projects. The scope of this task includes the following activities:

- Provide equipment (GOMACO GSI or Ames RTP) and labor for a field trial of 10 to 30 paving days
- Provide technical assistance for equipment installation start-up and operation
- On-call technical support throughout the duration of the field trial
- Planning, coordination and execution of the field trials
- Contact the recipient within 5 days of notice to proceed from the COR
- On-site support for at least 2 weeks
- · Maintain a master list of field trial participants and update the list quarterly

This report summarizes the activities and findings of an equipment loan conducted in Utah.

PROJECT DETAILS

The equipment loan was performed in July and August of 2016 on a project in Salt Lake County, Utah. Table 1 summarizes the pertinent project details.

Thomas	Patalla
Item	Details
Project Location	Mainline paving of I-215 in Salt Lake County, UT.
Route	I-215
Agency	Utah Department of Transportation (UDOT)
Paving Contractor	Ralph L. Wadsworth Construction Company (RLW)
Paving Equipment	Gomaco 2800 paver with DBI and Leica stringless machine control

Table 1. Salt Lake County, UT, I-215 Project Information

Item	Details				
Real-Time System	Gomaco GSI				
Typical Section	11" jointed plain concrete pavement (JPCP) on 3" HMA subbase.				
	11" JPCP				
	3" HMA Subbase				
	4" Dense Graded Agggregate Subbase				
	12" Granular Borrow				
	Natural Subgrade				
Joint Spacing	Transverse: 15' c/c				
	Longitudinal: 12' c/c				
Gomaco GSI	Paver width = 25'				
Setup	Concer #1, approximate 7' off modian adap				
	Sensor #1: approximate 7' off median edge. Sensor #2: approximate 6' off edge nearest existing pavement.				
Miscellaneous	A vibrator monitor was in use; vibrators were consistently operated in the				
Details	range of $\pm 8,500$ vpm.				
	Turf drag behind the paver and auto-float.				
	Hand finishing consisted of a 16' straightedge with an approximate 3' overlap				
	and a 6' channel float.				

IMPLEMENTATION ACTIVITIES

Installation of the GSI took place on the morning of April 12, 2016. Collection of real-time profile data began that afternoon and continued through the night of April 21, 2016.

Table 2 provides a summary of the R06E team's on-site technical support activities.

Date	On-Site Implementation Activities
13JUL2016	Install GSI.
14JUL2016	Project coordination and mix proportion analyses.
15JUL2016	GSI calibration and project coordination.
16JUL2016	Real-time profile data collection, 5:30 pm to 8:30 am.
17JUL2016	Real-time profile data collection, 5:30 pm to 4:30 am.
18JUL2016	Real-time profile data collection, 6:30 pm to 2:30 am.
19JUL2016	Real-time profile data collection, 6:30 pm to 12:00 am.
20JUL2016	
through	GSI was left with the contractor for continued unsupervised use.
08AUG2016	
09AUG2017	Uninstall the GSI

Table 2. Summary of R06E On-Site Activities

OBSERVATIONS, DATA and ANALYSES

This equipment loan was initiated through discussions with the local concrete pavement association representative. It was planned to coincide with the *Real-Time Smoothness Technology National Showcase* held in Salt Lake City, UT on August 9th, 2016. Both the contractor and UDOT were interested in utilizing the RTS equipment because UDOT had just recently transitioned from a profilograph index (PI) to an international roughness index (IRI) for pavement smoothness acceptance.

The paving observed by the SHRP2 team was urban mainline paving, and presented challenges typical to that type of work. Drainage inlets, paving adjacent to temporary barrier wall, and night paving were just some of the factors which complicate this type of paving. RLW's crews demonstrated quality workmanship and a clear understanding of slipform paving materials and processes. No major issues were observed during our tenure on the project.

Figures 1 through 4 illustrate different aspects of the project and RLW's paving processes.

Figure 1. GSI Installed Directly at the Rear of the Paver

Figure 2. Concrete Dumped Directly in Front of the Paver

Figure 3. Typical Finishing Hand Finishing Behind the Paver

Figure 4. Paving at a Drainage Structure

CONCRETE MIXTURE

Initial smoothness is sensitive to the workability and uniformity of the concrete mixture. The mixture proportions used by RLW are shown in Table 3.

Table 5					
		REAL-TIME SM		SS	
SHRP2SOLU	JTIONS	Mix Design & Pro	ect Info.		
	THE ROAD AHEAD				
<u>General Information</u> Project:	SALT LAKE COUNTY, I-215	300 EAST TO SR-201			l
Contractor:		, 300 EAST 10 SR 201			
	SLIPFORM MAINLINE #2				
Mix Description:	SLIPFORM MAINLINE #2				
Mix ID:					
Date(s) of Placement:					
					%
			Spec.		Replacement
Cementitious Materials		Туре	Gravity	lb/yd ³	by Mass
Portland Cement:	ASH GROVE		n/a	459	
GGBFS:		-		450	24.000/
Fly Ash: Silica Fume:	NAVAJO	F	n/a	152	24.88%
Other Pozzolan:					
				611	lb/yd³
				6.5	sacks/yd ³
			_		
Aggregate Information	Source	Туре	Spec. Gravity SSD	Absorption (%)	% Passing #4
	STAKER - PT WEST #4	Туре	n/a	(///) n/a	n/a
Intermediate Aggregate:			n/a	n/a	n/a
Fine Aggregate #1:			n/a	n/a	n/a
Coarse Aggregate #2:	STAKER - PT EAST #57				
Coarse Aggregate %:	n/a				
Course Aggregate An	11/ 4				
Intermediate Aggregate %:	n/a				
Intermediate Aggregate %: Fine Aggregate #1 % of Total Fine Agg.:		-			
Intermediate Aggregate %: Fine Aggregate #1 % of Total Fine Agg. Fine Aggregate #2 % of Total Fine Agg.	n/a	-			
Fine Aggregate #1 % of Total Fine Agg.:	n/a n/a	-			
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.:	n/a n/a n/a	-			
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %:	n/a n/a n/a				
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u>	n/a n/a n/a n/a				
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio:	n/a n/a n/a 0.400				
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u>	n/a n/a n/a n/a				
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio:	n/a n/a n/a 0.400 6.00%	Batch Weights SSD	Spec	Absolute	
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio:	n/a n/a n/a 0.400	Batch Weights SSD (lb/yd3)	Spec. Gravity	Absolute Volume (%)	
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio:	n/a n/a n/a 0.400 6.00% Volume (ft3)	5		Volume	
Fine Aggregate #1 % of Total Fine Agg.: Fine Aggregate #2 % of Total Fine Agg.: Fine Aggregate #1 %: Fine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3)	(lb/yd3)	Gravity	Volume (%)	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #1 %: Fine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content: Ortland Cement: GGBFS: Fly Ash:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3)	(lb/yd3)	Gravity	Volume (%)	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio: Air Content: Portland Cement: GGBFS: Fiy Ash: Silica Fume:	n/a n/a n/a 0.400 6.00% Volume (ft3) n/a	(lb/yd3) 459	Gravity n/a	Volume (%) n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio: Air Content: Ortland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a	(lb/yd3) 459 152	Gravity n/a n/a	Volume (%) n/a n/a	
Fine Aggregate #1 % of Total Fine Aggr: Fine Aggregate #2 % of Total Fine Aggr: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio: Air Content: Ortland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a n/a	(lb/yd3) 459 152 548	Gravity n/a n/a n/a	Volume (%) n/a n/a	
Fine Aggregate #1 % of Total Fine Aggr: Fine Aggregate #2 % of Total Fine Aggr: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio: Air Content: Ortland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a n/a n/a n/a	(lb/yd3) 459 152 548 300	Gravity n/a n/a n/a n/a	Volume (%) n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #2 %: Fine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a n/a n/a n/a n/a	(lb/yd3) 459 152 548	Gravity n/a n/a n/a	Volume (%) n/a n/a n/a n/a	
Fine Aggregate #1 % of Total Fine Aggr: Fine Aggregate #2 % of Total Fine Aggr: Fine Aggregate #1 %: Fine Aggregate #2 %: <u>Mix Proportion Calculations</u> Water/Cementitious Materials Ratio: Air Content: Ortland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a n/a n/a	(lb/yd3) 459 152 548 300 1,192	Gravity n/a n/a n/a n/a	Volume (%) n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #1 %: Fine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1: Fine Aggregate #1: Coarse Aggregate #2:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a n/a n/a n/a n/a n/a	(lb/yd3) 459 152 548 300 1,192 921	Gravity n/a n/a n/a n/a n/a	Volume (%) n/a n/a n/a n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #2 %: Fine Aggregate #2 %: Ine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content: Portland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1: Coarse Aggregate #1: Coarse Aggregate #1:	n/a n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a	(lb/yd3) 459 152 548 300 1,192 921	Gravity n/a n/a n/a n/a n/a	Volume (%) n/a n/a n/a n/a n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #2 %: Fine Aggregate #2 %: Ine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content: Portland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1: Coarse Aggregate #1: Coarse Aggregate #1:	n/a n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a	(lb/yd3) 459 152 548 300 1,192 921 244 3816	Gravity n/a n/a n/a n/a n/a	Volume (%) n/a n/a n/a n/a n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #2 %: Fine Aggregate #2 %: Ine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content: Portland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1: Coarse Aggregate #1: Coarse Aggregate #1:	n/a n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a	(lb/yd3) 459 152 548 300 1,192 921 244 3816	Gravity n/a n/a n/a n/a n/a	Volume (%) n/a n/a n/a n/a n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #2 %: Fine Aggregate #2 %: Ine Aggregate #2 %: Mater/Cementitious Materials Ratio: Air Content: Portland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1: Coarse Aggregate #1: Coarse Aggregate #2: Water: Air:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a n/a n/a n/a n/a n/a N/a Unit Weight (lb/ft ²)	(lb/yd3) 459 152 548 300 1,192 921 244 3816 b) 141.3	Gravity n/a n/a n/a n/a 1.000	Volume (%) n/a n/a n/a n/a n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #2 %: Fine Aggregate #2 %: Ine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Lir Content: Portland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1: Coarse Aggregate #2: Fine Aggregate #2: Water: Air:	n/a n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a Source/Description	(lb/yd3) 459 152 548 300 1,192 921 244 3816 9 141.3	Gravity n/a n/a n/a n/a 1.000 oz/cwt	Volume (%) n/a n/a n/a n/a n/a n/a	
Fine Aggregate #1 % of Total Fine Agg: Fine Aggregate #2 % of Total Fine Agg: Fine Aggregate #2 %: Fine Aggregate #2 %: Ine Aggregate #2 %: Mix Proportion Calculations Water/Cementitious Materials Ratio: Air Content: Portland Cement: GGBFS: Fly Ash: Silica Fume: Other Pozzolan: Coarse Aggregate #1: Intermediate Aggregate #1: Coarse Aggregate #1: Coarse Aggregate #1: Coarse Aggregate #1: Air: Mater: Air:	n/a n/a n/a n/a 0.400 6.00% Volume (ft3) n/a n/a n/a n/a n/a n/a n/a N/a Unit Weight (lb/ft ²)	(lb/yd3) 459 152 548 300 1,192 921 244 3816 b) 141.3	Gravity n/a n/a n/a n/a 1.000	Volume (%) n/a n/a n/a n/a n/a n/a	

Admix. #3:

Table 3. I-215 Concrete Mixture Proportions

Combined gradation data is provided in Table 4 and Figures 5 and 6.

Table 4. Tabular Sieve Analysis Data

REAL-TIME SMOOTHNESS IMPLEMENTATION

Combined Gradation Test Data

Project: SALT LAKE COUNTY, I-215, 300 EAST TO SR-201 Mix ID: n/a Sample Comments: MIX DESIGN FROM RLW Test Date: SUPPLIER AVERAGES FROM VARIOUS DATES

Total Cementitious Material:		611 lb/yd ³			
Agg. Ratios:	Agg. Ratios: 18.50% 10.10%		40.30%	31.10%	100.00%

Sieve	Coarse #1 (#4)	Intermediate (#8)	Fine #1	Coarse #2 (#57)	Combined % Retained	Combined % Retained On Each Sieve	Combined % Passing
2 1⁄2"	100%	100%	100%	100%	0%	0%	100%
2"	100%	100%	100%	100%	0%	0%	100%
1 ½"	99%	100%	100%	100%	0%	0%	100%
1"	35%	100%	100%	100%	12%	12%	88%
3⁄4 "	3%	100%	100%	93%	20%	8%	80%
1⁄2"	1%	100%	100%	45%	35%	15%	65%
³ ⁄8"	1%	94%	100%	15%	45%	10%	55%
#4	1%	13%	98%	2%	58%	13%	42%
#8	1%	3%	88%	1%	64%	5%	36%
#16	1%	1%	57%	1%	76%	13%	24%
#30	1%	1%	38%	1%	84%	8%	16%
#50	1%	1%	24%	1%	90%	6%	10%
#100	1%	1%	10%	1%	95%	6%	5%
#200	0.4%	0.5%	2.6%	0.3%	98.7%	3.4%	1.3%

Workability Factor: 37.5

Coarseness Factor: 71.2

26% Coarse Sand 22% Fine Sand

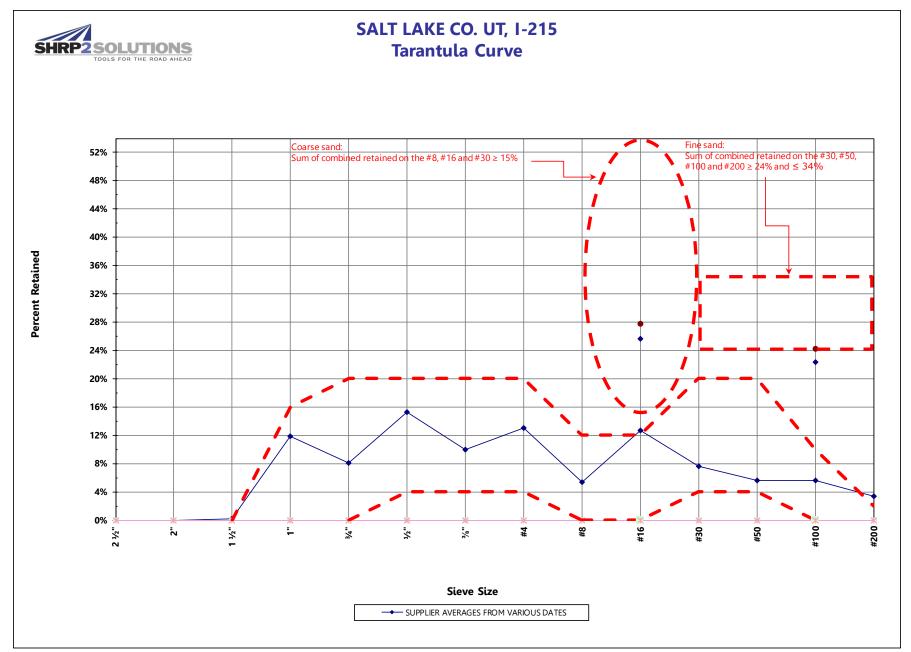


Figure 5. I-215 Combined Percent Retained (Tarantula Curve)

SALT LAKE CO. UT, I-215

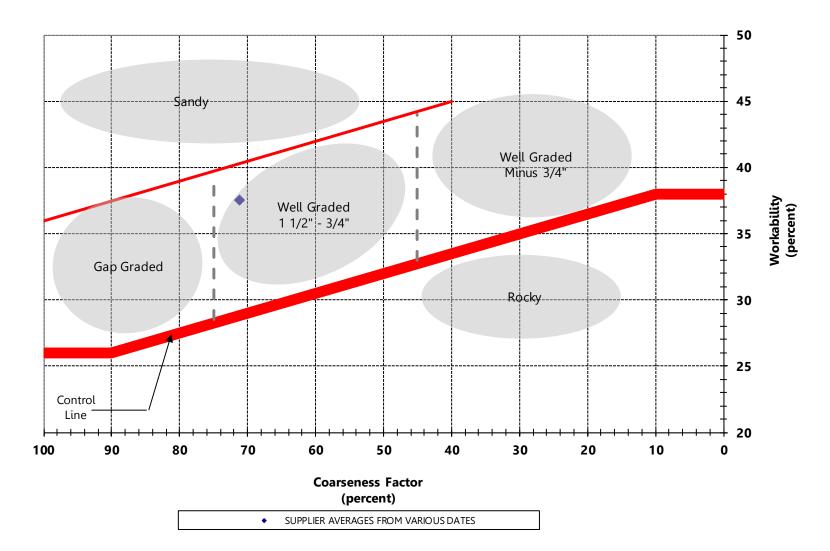


Figure 6. I-215 Combined Gradation Coarseness and Workability Factors

PROFILE CHARCTERISTICS

The following information is provided to illustrate how real-time smoothness systems can be used as a tool to improve the initial smoothness of concrete pavements.

Real-Time Smoothness (RTS) vs. Hardened QC Profile

The real-time smoothness results for the first night of paving had lower IRI values than the hardened profiles (Table 5). It was apparent that the auto-float was not adjusted properly, introducing roughness behind the GSI sensors that was not fully removed by the hand finishers.

Table 5. Real-Time and Hardened IRI for 500' Section of Matched Profiles with Auto-Float Operating on July 16, 2016.

	IRI (in/mi)			
Location	Description	Real-Time	Hardened	Difference
1026+47 to 1031+47	Shoulder	76	88	12
1020+47 (0 1031+47	Lane	66	96	30

This relationship between real-time and hardened IRI values is not the norm, and RLW subsequently removed the auto-float from use on the second night's paving which resulted in lower IRI values for the hardened profiles (Table 6).

Table 6. Real-Time and Hardened IRI for 800' Section of Matched Profiles with No Auto-Float Operating on July 20, 2016.

		IRI (in/mi)		
Location	Description	Real-Time	Hardened	Difference
1072+00 to 1080+00	Shoulder	49	46	-3
1072+00 (0 1080+00	Lane	56	50	-6

The difference between real-time and hardened IRI as shown in Table 6 is typical for initial smoothness values in the ± 50 in/mi range.

Repeating Profile Features

The power spectral density analysis (PSD) from ProVAL shows the 15' joint spacing and 5' harmonic as the dominant wavelengths contributing to roughness. These wavelengths are present in the real-time and hardened profiles (Figure 7). This is typical for JPCP with initial smoothness in the ± 50 in/mile range.

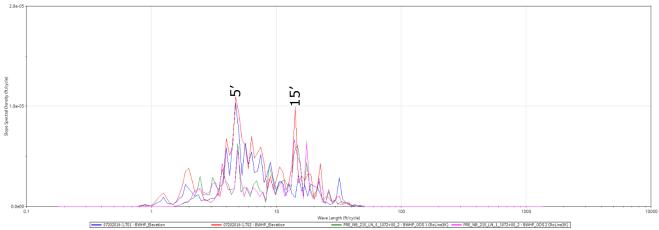


Figure 7. PSD Analysis Showing Joint Spacing at 15' and 5' Harmonic Wavelengths Contributing to Pavement Roughness

CONCLUSIONS and LESSONS LEARNED

The following points summarize the preliminary conclusions made from profile analyses and on-site documentation, as well lessons learned from the equipment loan.

Profile Analyses:

- Removal of the auto-float improved the hardened profile substantially.
- Initial smoothness (real-time and hardened) improved after the first night of paving and remained consistently below 70 in/mile,
- The influence of dowel bars at the transverse joints is the largest impact on initial smoothness in sections where paving is consistent and other factors are not influencing the paving process.

SHRP2 Implementation Team and Contractor Observations

- An exit interview was conducted with the paving superintendent. His observations regarding real-time smoothness measurements included:
 - The GSI provides valuable real-time feedback regarding initial smoothness.
 - The ability to see the impacts of process adjustments in an hour or two provides confidence to make changes in the processes.
- Soon after the SHRP2 equipment loan, the contractor purchased an Gomaco GSI.