Economic Benefits of Additional Rail Bridge Capacity

A case study on the benefits of replacing the Merchants Bridge main spans at St. Louis

Prepared by Emma J. Nix Under the Direction of Dr. Ray Mundy

Future of the Rail Industry

- FRA predicts total tonnage moved by rail will see a 35% increase from 2010 to 2050.
 - AAR suggests \$148 billion must be invested to accommodate forecasted 2035 demand levels.
 - Without improvements, 30% of rail miles in primary corridors will be congested by 2035.
- U.S. DOT estimates that <u>demand</u> for freight tonnage will increase 88% from 2002 to 2035.
 - Quantity demanded will exceed quantity supplied.

Merchants Bridge, St. Louis, MO-IL

Built in 1890.

UMSL | COLLEGE OF BUSINESS

- Operates at limited capacity due to weight restrictions.
- Improvements will restore it to a doubletracked bridge.
 - This will allow the Merchants Bridge to alleviate congestion on other routes.
- Without improvements, Merchants Bridge will close in 2034.

Merchants and MacArthur Bridge Crossing

- At and average of 72.8 trains per day, the bridges make up the most heavily trafficked Mississippi River crossing in the country.
- One of the few crossings open to all railroads.

2014 Train Count - Mississippi River Bridges							
Rank	Bridge	States	Count	Average TPD	Source		
1	Ft Madison BNSF	IL-MO	23152	63.4	AEI 178 179		
2	Thebes UP	IL-MO	16699	45.8	AEI 625		
3	Clinton UP	IL-IA	15644	42.9	AEI 475 476		
4	MacArthur Bridge-TRRA	IL-MO	14790	40.5	AEI 68 69		
5	Memphis BNSF	TN-AR	12023	32.9	AEI 137		
6	Merchants Bridge-TRRA	IL-MO	11798	32.3	AEI 1150 1151		
7	Hastings CP	MN		20.0	Estimate		
8	La Crosse CP	WI-MN		20.0	Estimate		
9	Burlington BNSF	IL-IA		20.0	Estimate		
10	Huey P Long Bridge NOPB	LA	6907	18.9	AEI 473/474		
11	Vicksburg KCS	MS-LA	6309	17.3	AEI 1121		
12	Camden Place (Minneapolis) CP	MN		16.0	Estimate		
13	Hoffman UP	MN	5562	15.2	AEI 418		
14	Memphis UP	TN-AR	4954	13.6	AEI 235 236		
15	Hannibal NS	IL-MO		11.0	Estimate		
16	East Minneapolis BNSF	MN		10.0	BNSF TPD map		
17	Rock Island IAIS	IL-IA		10.0	Estimate		
18	Sabula CP	IL-IA		8.0	Estimate		
19	Quincy BNSF	IL-MO		8.0	Estimate		
20	Roberts Street UP	MN		7.0	Estimate		
21	Baton Rouge	LA		7.0	Estimate		
22	Louisiana KCS	IL-MO		5.0	Estimate		
23	Bridge 15 UP	MN		4.0	UP Volume map		

Benefits of Project

Benefits are gained by:

- 1. Avoiding diversion of freight to longer rail routes.
 - Nearest bridge accessible to all railroads takes an additional 300 miles to travel.
- 2. Diverting freight from truck to rail.
 - Mile-for-mile, rail is cheaper than truck.
- 3. Run time improvements.
 - Increase speed over bridge from 6 mph to 14 mph.

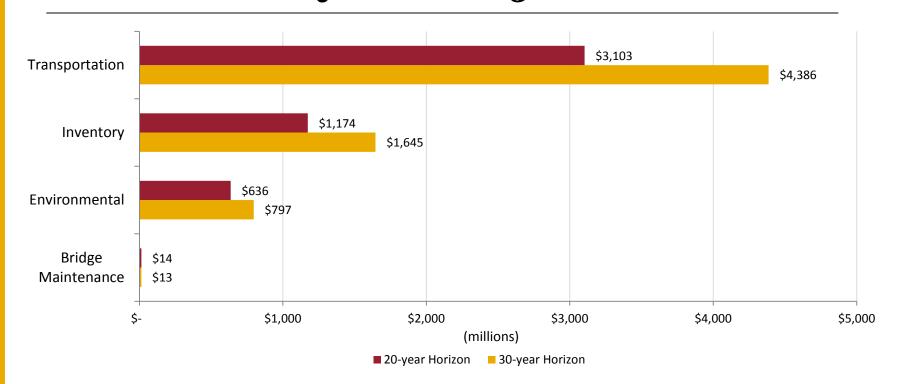
Cost Savings

Benefits can be further broken down into:

- 1. Transportation Cost Savings
 - Labor, Fuel, Maintenance, Congestion, etc.
- 2. Environmental Cost Savings
 - Emissions, Noise.
- 3. Inventory Cost Savings
 - Cost of delayed lading.

Summary of Project Costs

- 1. Construction costs.
- 2. Costs of closing bridge during construction.
- Use upper bound and lower bound construction cost estimates.
 - Upper bound: \$212 million.


Construction cost: \$212 million, 7% discount rate (in millions)

Year	Total Cost of		Total Cost of		Total Cost to		Total Cost of		Total Annual	
Teal	Construction		Transportation		Environment		Delay			Cost
2017	\$	72.0	\$	10.3	\$	3.7	\$	4.3	\$	90.3
2018	\$	65.4	\$	9.7	\$	3.3	\$	4.1	\$	82.6
2019	\$	61.1	\$	9.2	\$	3.0	\$	3.9	\$	77.2
							Total	Cost	\$	250.0

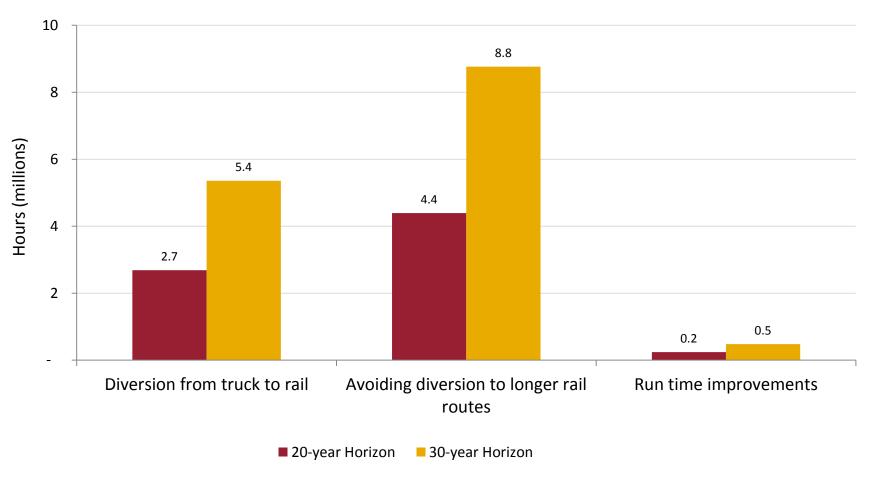
- Lower bound: \$150 million
 - Total project cost: \$191.9 million.

Summary of Project Benefits

Net Present Value of Project (Benefits – Costs)

	NPV	NPV		
	(20-year Horizon: 2017-2036)	(30-year Horizon: 2017-2046)		
3% discount rate	\$ 7.1 billion	\$ 11.9 billion		
7% discount rate	\$ 4.7 billion	\$ 6.6 billion		

TIGER Guidelines


Project benefits should be realized across 5 categories:

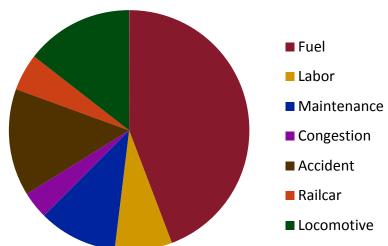
- 1.Livability
- 2. Economic Competitiveness
- 3.Safety
- 4. State of Good Repair
- 5. Sustainability

Livability

Total Hours Saved due to Project

- 7.3 million hours saved in 20-year horizon.
- 14.6 million hours saved in 30-year horizon.

Economic Competitiveness


 Approximately \$3.1 billion saved in transportation costs from 2017-2036.

Total Transportation Cost Savings by type, 7% discount rate, in millions.

Diverting Freight from	Avoiding Diversion to	Run Time	Total	
Truck to Rail	Longer Rail Routes	Improvements	iotai	
\$ 352	\$ 2,701	\$ 50	\$ 3,103	

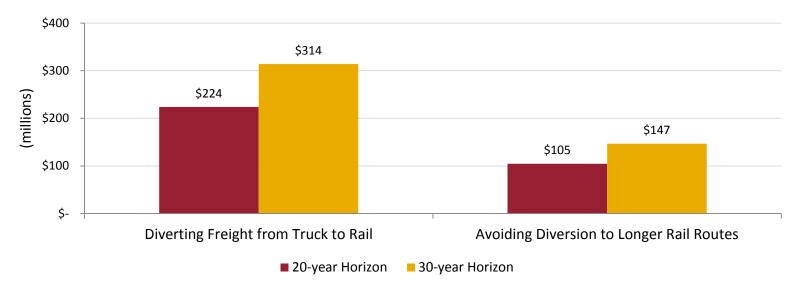
\$4.4 billion over 30-year horizon.

Components of Transportation Cost Savings

Safety

- 1. Decreased number of trucks on the highways.
 - 1.19¢ per truck ton mile; 0.25¢ per rail ton mile.
 - Total cost of miles traveled by rail compared to cost if freight, instead, traveled by truck.
- 2. Decreased rail miles traveled per ton of freight.
 - Cost differential of additional miles.

Transportation Cost Savings: 20-year horizon, 7% discount rate (in millions)

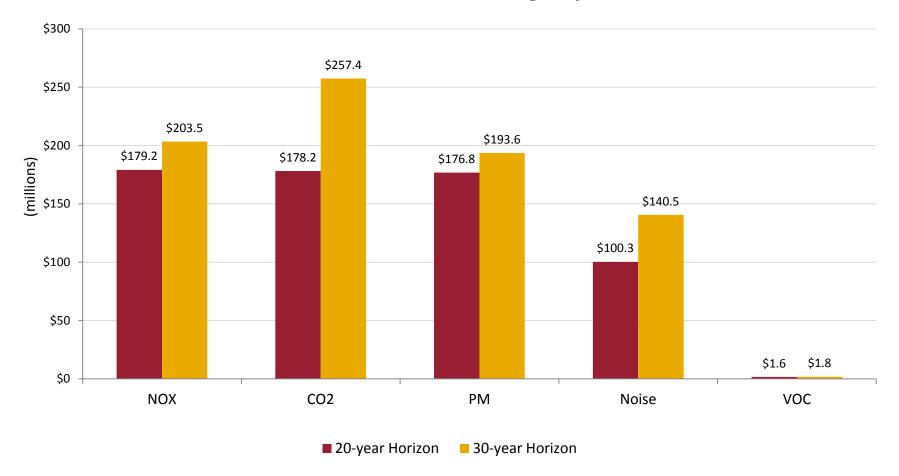

Diverting Freight from	Avoiding Diversion to	Total
Truck to Rail	Longer Rail Routes	IOtal
\$ 11.3	\$ 436.5	\$ 447.8

\$628 million over 30-year horizon.

State of Good Repair

1. Road and Rail maintenance cost savings.

2. Bridge maintenance costs.


Total Bridge Maintenance Costs: 7% discount rate (in millions)

	Baseline Alternative		Build Altern	Total		
20-year Horizon	\$	14.7	\$	1.0	\$	13.7
2020 to 2034	\$	7. 1	\$	1.0	\$	6.2

Sustainability

Total Environmental Cost Savings, by Pollutant

- \$636 million over 20-year horizon
- \$797 million over 30-year horizon

What does this mean?

- Improving the Merchants Bridge could generate billions in benefits over the coming decades.
 - Benefits shared by industry and public.
- Investing in other existing rail infrastructure will produce similar benefits, allowing the industry to keep up with growing demand.
 - Decrease costs associated with freight transport.
 - Decrease congestion on routes operating at or above capacity.
 - Decrease overall transport time.

Questions?

