Guide for Concrete Pavement Distress Assessments and Solutions

GUIDE FOR

CONCRETE PAVEMENT DISTRESS ASSESSMENTS AND SOLUTIONS

IDENTIFICATION, COMPREHENSION, PREVENTION AND REPAIR

DRAFT - MONTH YEAR
Technical Advisory Committee Members

Andy Bennett – Michigan DOT
Tom Burnham – Minnesota DOT
John Donahue – Missouri DOT
Kevin McMullen – Wisconsin Concrete Paving Association
Andy Naranjo – Texas DOT
Randy Riley – ACPA (IL Chapter)
Jeff Uhlmeyer – Washington State DOT
Matt Zeller – Concrete Paving Association of Michigan

Chris Brakke – Iowa DOT
Dan DeGraaf – Michigan Concrete Paving Association
Brian Killingsworth – NRMCA
Brad Mirth – Oklahoma DOT
Jim Pappas – Delaware DOT
Gordon Smith – ICPA
Tom Yu - FHWA

Authors

Gary Fick – Trinity Construction Management Services
Tom Van Dam – Nichols
Tom Cackler – Woodland Consulting
Mike Ayers – Global Pavement Consultants
Doug Schwartz – Gateway

Mark Snyder – Consultant
Kurt Smith – AP Tech
Peter Taylor – CP Tech Center
Andrea Marsh – Snyder and Associates
Dale Harrington – Snyder and Associates
The Purpose of the Guide

The Guide is intended to answer the following questions:

• What distress is present?

• What caused the distress

• How can its reoccurrence be prevented?

• What are the options for repair?
Audience

- Pavement Design Engineers
- Field Engineers
- Construction or Maintenance Staff
- Asset and Pavement Management Engineers
- Consulting Engineers
Guide Details

- Work began in February 2016
- Guide includes 3 Divisions
- Guide includes 19 chapters
- Chapters average 17 pages in length
Divisions

Division I – Full Depth Concrete Pavement
Division II – Concrete Overlays
Division III – Testing and Support Conditions
Division I (Full Depth Concrete Pavement) Chapters

1. Introduction
2. Surface Defects
3. Surface Delamination
4. Material Related Cracks
5. Transverse/Diagonal Cracking
6. Longitudinal Cracking
7. Corner Cracking
8. Spalling
9. Faulting
10. Joint Warping and Curling
11. Blowups
12. Continuous Reinforced Concrete Pavement
13. Introduction
14. Concrete Bonded over Asphalt/Composite (BCOA)
15. Concrete Bonded Overlay Concrete (BCOC)
16. Concrete Unbonded over Asphalt/Composite (UBCOA)
17. Concrete Unbonded over Concrete (UBCOC)
Division III (Testing and Support Conditions) Chapters

18. Subgrades and Bases
19. Laboratory and Field Testing
Typical Chapter Layout

I. Description
II. Severity
III. Identification of Causes
IV. Evaluation
 • Causes
 • Prevention
V. Distress Treatment and Repairs
VI. References
Spalling Subjects

Deflection Spalling From Heavy Vertical Loads

Early Saw Joint Raveling

Chloride Penetration

Dowel Bar Misalignment
Spalling Subjects

Freeze Thaw Damage

Saturated Joint Backer Rod Damage

Saturated Joint with Unsound Aggregate

Incompressible Joint Damage
B. Joint Compression

Transverse and longitudinal joints are designed and constructed in JPCP to allow slab expansion and contraction and prevent cracking. However, there are certain factors that can lead to compression stresses at the face of the joint which can cause spalling. These are as follows:

Incompressibles: One purpose of sealing joints and cracks in concrete pavement is to reduce infiltration of moisture and incompressible materials for improved pavement performance. Incompressible material fills the joint or crack openings and create excessive stresses that may cause spalling.

![Figure 11 - Image of incompressible damage to concrete joint (Photo credit CP Tech Center)](image)

Figure 12 - Image of pavement cross-section showing incompressibles causing spalling

1. **Causes:**

 Incompressible materials, such as small aggregates can enter into unsealed joints causing excessive stresses along the joint face of the concrete when the joint contracts (Figure 11 & 12). The result can be fracturing of the joint near the top of the slab, particularly with transverse joints. Joints become wider over time (particularly the first five years) as the panels shrink. Intrusion of aggregates into the joint has also occurred in longitudinal joints near the outside edge of the slab with granular shoulders. As concrete pavement ages, the slab is subjected to continued shrinkage. This horizontal movement from contraction and expansion with temperature and moisture fluctuations, along with the vertical impact of repeated traffic loads, can cause excess compressive stress. The result can be micro cracking which eventually turns into spalling.

2. **Prevention:**

 There are basically two ways to prevent incompressibles from entering an unsealed joint:

 Joint sealing: Joints with saw cuts approximately ¼ inch wide may be sealed using bituminous material, asphalt rubber, silicone, or preformed compression joint seal materials during initial construction (depending on climate region). Sealing on a regular basis can decrease pavement damage. Joint resealing will typically be needed every 10 to 15 years depending on the material type, climate, and pavement conditions. It is often performed along with other pavement preservation work, including spall repair, individual slab replacement, and grinding.

 Narrow saw cuts: Some states specify thin (1/8 to 1/16 inches) saw cuts to help prevent incompressibles from entering the joint. When incompressibles are less than 1/8 inch wide they typically do not result in excessive stresses along the joint face and spalling.
Summary of Causes and Prevention of Distress Table

<table>
<thead>
<tr>
<th>Distress in Concrete Pavement</th>
<th>Causes</th>
<th>Design</th>
<th>Material Selection</th>
<th>Construction</th>
<th>Preventative Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Note: The table entries are placeholders for actual causes and mitigation strategies.