Multiple Changepoint Detection on speed profile in work zones using SHRP 2 Naturalistic Driving Study Data

Hossein Naraghi 2017 Mid-Continent TRS
Background

• Presence of road constructions and maintenance
 • Increase safety risks
 • Disturbance to traffic flow
 • High cognitive work load for drivers
• 700-1000 fatalities per year in last 10 years
• 11% increase in work zone fatalities (2011 – 2014)
 • Small decrease in non-work zone fatalities
• Limited details on available crash data
 • Officer interpretation, Witness testimony
• Unclear driver behavior and underlying causes of work zone crashes
Background

Speed management effectiveness

• Numerous countermeasures tend to get drivers attention to reduce speed
• How drivers react to measures like DMS, lane closure, merge sign, speed feedback sign, and ….?
• Are the safety measures effective?
• How effective are ITS strategies in getting driver attention?

• How to identify the most effective countermeasure if driver behavior is not well understood?

• SHRP2 NDS Time Series speed data collected at high frequency at 10HZ (every 0.1 second)
• Opportunity for a first hand observation of driver behavior
The more recent study by NHTSA in 2015 confirms numbers and reveals critical reasons attributed to:

- **Drivers** 94%
- **Vehicles** 2%
- **Environment** 2%
- **Unknown** 2%

NHTSA Traffic safety Facts 2015
(Data Source: NMVCCS 2005–2007)
Objectives

Utilize SHRP2 NDS time series data and forward video images

• Determine where drivers starts to react to different work zone features
• Identify the effectiveness of speed countermeasures
• Develop models to predict driver reactions to work zone features
Data collection

- **SHRP 2 Naturalistic Driving Study Data (NDS)**
 - 3100 participant drivers
 - Oct 2010 – Nov 2013
 - 6 Sites
 - 5 M trips
 - 20 M data miles
 - 4 M GIGs data

<table>
<thead>
<tr>
<th>Site</th>
<th>Primary Participant Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo, NY</td>
<td>719</td>
</tr>
<tr>
<td>Tampa, FL</td>
<td>698</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>676</td>
</tr>
<tr>
<td>Durham, NC</td>
<td>504</td>
</tr>
<tr>
<td>Bloomington, IN</td>
<td>239</td>
</tr>
<tr>
<td>State College, PA</td>
<td>256</td>
</tr>
</tbody>
</table>

VTTI, 2013
Data Acquisition System

DAS Includes:
• Forward radar
• Four video cameras, including one forward-facing
• GPS
• Accelerometers
• Computer vision lane tracking
• DAS main unit

SHRP2 data acquisition system installation schematic (Antin et al., 2011)

(The driver in the picture is not experimental participant and just for demonstration purpose only) (Dingus et al., 2014)
Data collection

- SHRP 2 Roadway Information Database (RID)
- 25,000 miles of roadway data

<table>
<thead>
<tr>
<th>Curve Radius</th>
<th>Lane Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve Length</td>
<td>Shoulder Types</td>
</tr>
<tr>
<td>Curve Point of curvature</td>
<td>All Signs on MUTCD</td>
</tr>
<tr>
<td>Curve Point of tangency</td>
<td>Guardrails/Barriers</td>
</tr>
<tr>
<td>Curve Direction</td>
<td>Intersection Geometry</td>
</tr>
<tr>
<td>Grade</td>
<td>Median Types</td>
</tr>
<tr>
<td>Cross-slope/Super elevation</td>
<td>Presence of Rumble strips</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>Presence of Lighting</td>
</tr>
<tr>
<td>Lane Width</td>
<td></td>
</tr>
</tbody>
</table>

A site map shows the RID database in the SHRP2 NDS (Smadi, 2015)
Data

Speed time series trajectories ¼ mile upstream of 1st WZ warning sign through work area

• 62 speed traces
• 29 male drivers
• 33 female drivers
• 35 Unique drivers
 • 18 male
 • 17 female
• 36 traces in open lane
• 26 traces in closed lane

WZ Configuration
• 4-lane divided Rural
 • Left lane closure
 • Cross-over
 • head to head traffic

WZ Features
• Identified in forward video
• Matched with nearest time stamp
• Vehicle position relative to the start of taper calculated for every 0.1 sec using GPS speed at location
Data quality assurance

• Forward video image quality
 • Excluded traces with very poor image quality
 • Identify the location of countermeasures
 • Detect the position of vehicle
 • Confirm active WZ
 • Verify free flow

• Speed time series data issue was missing data
 • Excluded traces with more than 25% missing values
 • Utilize interpolation techniques to calculate missing values
Methodology

Multiple changepoint analysis

Used in different application areas

- Climatology
- Finance
- Medical imaging
- Oceanography
Multiple changepoint detection

Identify driver’s reaction to series of countermeasures in WZ

Changepoint analysis or segmentation regression
- Aims to achieve homogeneity within time series data
- Method of time series analysis which divides data into sequence of isolated segments to show underlying properties of its source of isolation
- A time instance when statistical properties of data change
- Partition data into regions lies in between different important events
 - Series of speed countermeasures
 - DMS, merge sign, WZ speed limit, flashing arrow, speed feedback sign, …
• Use an efficient method for searching the solution space
• Choose the appropriate penalty which depends on the size of the changes and length of segments
 • Unknown prior to analysis
• Identifying the optimal number and location of changepoints
Multiple changepoint analysis

Pruned Exact Linear Time (PELT) package in R utilized to identify multiple changepoints by partitioning data into different regions based on different important events.

Speed time series data is defined as:

\[V_{1:n} = (V_1, V_2, \ldots, V_n) \]

A changepoint may occur within this set when there exists a time \(\tau \in \{1, \ldots, n - 1\} \)

where statistical properties of \(\{V_1, \ldots, V_\tau\} \) and \(\{V_{\tau+1}, \ldots, V_n\} \)

are different in some way.
Multiple changepoint analysis

For multiple changes, there are multiple changepoints, m, together with their positions, expressed as follows:

$$\tau_{1:m} = (\tau_1, \ldots, \tau_m)$$

Each changepoint is an integer between 1 and $n-1$

the m changepoints will split the data into $m + 1$ segments

The aim of the analysis is to efficiently and accurately estimate the location of multiple changepoints by minimizing the following equation:

$$\sum_{i=1}^{m+1} \left[C(V_{(\tau_{i-1}+1):\tau_i}) \right] + \beta f(m)$$

cost function
penalty against overfitting
Speed traces distribution

Number of Traces

Speed (mi/h)

50
55
60
65
70
75

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62
- 62 Time series speed traces
- 29 Male 33 Female
- 35 unique drivers
- 18 Male, 17 Female
Mean of time series speed traces

![Graph showing mean of speed series over distance](image-url)
Countermeasure types and locations
Mean of time series speed traces

62 Traces All

26 Traces closed lane

33 Traces female drivers

36 Traces open lane

29 Traces male drivers
Changepoint type: Change in mean
Method of analysis: PELT
Test Statistic: Normal
Type of penalty: BIC with value, 14.45678
Minimum Segment Length: 1
Maximum no. of cpts: Inf
Changepoint Locations: 97 241 595 624 669 776 812 856 926 955 986 1033 1189 1220

R code:
```r
> ncpts(change_mean)
[1] 14
> seg.len(change_mean)
[1] 97 144 354 29 45 107 36 44 70 29 31 47 156 31 158
coef(change_mean)
$mean
[1] 67.3 66.3 65.4 64.3 63 61.8 60.7 59.4 58.2 56.9
[11] 55.1 53.1 51.6 53.2 54.7
```
Changepoint type: Change in mean
Method of analysis: PELT
Test Statistic: Normal
Type of penalty: Manual with value, 722.8388
Minimum Segment Length: 1
Maximum no. of cpts: Inf
Changepoint Locations: 621 812 959

> ncpts(change_mean)
[1] 3
> seg.len(change_mean)
[1] 621 191 147 419
> coef(change_mean)
$mean
[1] 65.8 61.9 58.3 53.3
Mean Changepoints

- Number of changepoints = 5
- Mean change coef: 66.8, 65.3, 61.8, 58, 52.2, 54.7
- Segment length: 226, 398, 196, 150, 239, 169
Mean Changepoints

62 Traces All

26 Traces closed lane

33 Traces female drivers

36 Traces open lane

29 Traces male drivers
Mean Changepoints Summary

<table>
<thead>
<tr>
<th>Model Input Data</th>
<th>Mean Speed (mi/h) Upstream</th>
<th>Change in Mean Speed (mi/h)</th>
<th>Mean Speed (mi/h) Reacting to first WZ sign and DMS</th>
<th>Change in Mean Speed (mi/h) Reacting to Lane closure sign, WZ posted speed sign, start of taper and flashing arrow signs</th>
<th>Mean Speed (mi/h) Reacting to WZ posted speed sign, channelization</th>
<th>Change in Mean Speed (mi/h) Reacting to start of work area</th>
<th>Mean Speed (mi/h) Reacting to start of work area speed reduction (mi/h)</th>
<th>Upstream to work area speed reduction (mi/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (62 Traces)</td>
<td>66.8</td>
<td>-1.5</td>
<td>65.3</td>
<td>-3.5</td>
<td>61.8</td>
<td>-3.8</td>
<td>58.0</td>
<td>-5.8</td>
</tr>
<tr>
<td>Open lane (36 Traces)</td>
<td>65.2</td>
<td>-1.4</td>
<td>63.7</td>
<td>-2.5</td>
<td>61.2</td>
<td>-3.3</td>
<td>57.9</td>
<td>-4.5</td>
</tr>
<tr>
<td>Closed lane (26 Traces)</td>
<td>69.3</td>
<td>-1.6</td>
<td>67.7</td>
<td>-5.1</td>
<td>62.6</td>
<td>-4.2</td>
<td>58.4</td>
<td>-7.0</td>
</tr>
<tr>
<td>Female drivers (33 Traces)</td>
<td>65.6</td>
<td>-1.7</td>
<td>63.9</td>
<td>-3.4</td>
<td>60.5</td>
<td>-3.5</td>
<td>57.0</td>
<td>-5.9</td>
</tr>
<tr>
<td>Male drivers (29 Traces)</td>
<td>68.5</td>
<td>-1.6</td>
<td>66.9</td>
<td>-3.7</td>
<td>63.2</td>
<td>-4.0</td>
<td>59.2</td>
<td>-5.7</td>
</tr>
</tbody>
</table>
Conclusions

Changepoint PELT Model

- NDS data provides opportunity to understand and summarize driver behavior by analyzing time series data

- The analysis reveals a promising results on quantifying driver’s speed behavior
 - Provide reaction location
 - Prime changepoint locations
 - Length of stable condition
 - Magnitude of mean speed reduction
Future Research

• Identify which work zone features are more likely to get driver’s attention
 • DMS compared to static sign
 • DSFS vs. WZ speed limit sign
• Determine the effectiveness of the locations of the countermeasures
 • DMS located after 1st warning sign
 • DMS after the merge sign
• Investigate the effectiveness of WZ configurations
 • left lane vs. right lane closure
 • lane shift no shoulder vs. lane closure
• Look for roadway and environmental effects
Have patience
All things are difficult before they become easy