Smart Skin for Fatigue Crack Detection

S. Laflamme1,2, Jian Li3

1Dept. of Civil, Constr., and Env. Eng., Iowa State University
2Center for Nondestructive Evaluation, Iowa State University
3Dept. Of Civil, Env., and Archi. Eng., University of Kansas
Introduction

Fatigue cracks in steel bridges

- Fatigue-induced cracks are one of the major concerns for steel bridges
- Monitoring fatigue cracks is critical

Crack monitoring methods

- Visual inspections

- Nondestructive testing
- Computer vision methods

- Strain sensing methods
 - Foil strain gauge
 - Fiber optic sensor

- Limitations
 - Small sensing area
 - Low ductility of sensing material
Sensing Skins

Large-area strain sensors

- Printable conductive polymer (Loh, 2007)
- Carbon nanotube thin film sensor (Loh, 2008; Thostenson, 2015)
- Resistive sensing sheet (Yao and Glisic, 2015)
- Patch antenna sensor (Huang, 2010; Wang, 2013)
- Soft Elastomeric Capacitor (SEC) (Laflamme, 2012)
Smart Sensing Skin

Soft elastomeric capacitor (SEC)

- Wider range of strain measurement (20%)
- Large sensing area (76 mm × 76 mm)
- Low cost and mechanically robust

\[
C = \frac{e_0 e_r A}{h}
\]

- \(e_0\), vacuum permittivity
- \(e_r\), relative permittivity of the polymer
- \(A = wl\), area of sensor
- \(h\), thickness of sensor
Smart Sensing Skin

SEC for crack monitoring

- Increasing mean capacitance
- Increasing peak-to-peak capacitance (pk-pk amplitude)
Smart Sensing Skin

Previous tests

- Verified the capability of the SEC for crack detection and localization
- Low-cycle fatigue crack
Smart Sensing Skin

High-cycle fatigue cracks in steel bridges

<table>
<thead>
<tr>
<th></th>
<th>Fatigue life</th>
<th>Stress level</th>
<th>Crack opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-cycle fatigue</td>
<td>Short</td>
<td>High</td>
<td>Large</td>
</tr>
<tr>
<td>High-cycle fatigue</td>
<td>Long</td>
<td>Low</td>
<td>Small</td>
</tr>
</tbody>
</table>

Challenges for monitoring high-cycle fatigue

- 1) Mean capacitance drift over long term
- 2) Lower sensor response under lower stress level
Proposed algorithm

- Four-step procedure: 1) data collection; 2) frequency analysis; 3) computing Crack Growth Index (CGI); and 4) crack growth monitoring.
Small-scale Testing

Test setup

- Compact steel specimen
- Instron load frame
- Off-the-shelf DAQ: ACAM PCAP-02
- Load cycle: harmonic
Small-scale Testing

Loading protocols design

- Motivation: limit the plastic deformation at the crack tip

Approach

- Based on ASTM E1820-15
- Range R of stress intensity factor remains constant
- Stress intensity ratios $R = 0.1, 0.4, \text{ and } 0.6$

$$R = \frac{F_{\text{min}}}{F_{\text{max}}}$$

- Three tests and five datasets.
Small-scale Testing

Crack growth under new loading protocols

- Limited plastic deformation at the crack tip

<table>
<thead>
<tr>
<th>Test number</th>
<th>Number of cycles</th>
<th>Specimen fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>1,810,000</td>
<td>No</td>
</tr>
<tr>
<td>Test 2</td>
<td>660,000</td>
<td>No</td>
</tr>
<tr>
<td>Test 3</td>
<td>605,000</td>
<td>No</td>
</tr>
<tr>
<td>Previous Low-cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue Test</td>
<td>14,500</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Low-cycle fatigue

- Crack tip, 38.1 mm (24/16 in)

High-cycle fatigue

- Crack tip, 46.0 mm (29/16 in)
Small-scale Testing

SEC measurements – first dataset
Small-scale Testing

CGI for all datasets

- Test 1: $R = 0.1$
- Test 2: $R = 0.4$
- Test 2: $R = 0.6$
- Test 3: $R = 0.4$
- Test 3: $R = 0.6$

Graphs showing the relationship between Crack length (mm) and CGI for different tests.
Large-scale Bridge Girder Testing

Motivation

- Investigate the SEC’s ability for monitoring out-of-plane fatigue crack in a more complex structural configuration

Test structure

- Skewed girder to cross-frame connection
- Existing fatigue cracks

Existing out-of-plane fatigue cracks
Large-scale Bridge Girder Testing

Finite element analysis

- Goal: capture strain field of the connection under loading
- Shell element-based FE model
Large-scale Bridge Girder Testing

Test setup

- A SEC array is deployed to cover fatigue critical region
- Two sizes of SEC
 - 3 x 3 in²
 - 1.5 x 1.5 in²
- 0 to 2.5 kip harmonic load
Large-scale Bridge Girder Testing

Typical SEC measurement – Top

- Time series measurements

- Map of CGI (crack growth index)
Conclusion

- The SEC is a large area and flexible strain sensing skin, suitable for monitoring fatigue cracks.

- The pk-pk amplitude is proposed as a robust indicator of crack growth, which is insensitive to the capacitance drift.

- Small-scale testing results verify that the proposed CGI algorithm can robustly monitor the crack growth under various loading conditions.

- Preliminary results on full-scale steel girder demonstrate that the SEC array can detect and localize fatigue cracks.
Acknowledgement

This work is supported by the Transportation Pooled Fund Study, *TPF-5(328)*, which includes the following participating state DOTs: Kansas, Iowa, Minnesota, North Carolina, Pennsylvania, Texas, and Oklahoma.