Guide Specification Internal Curing
(Scheduled for Publishing - January 2018)

Sponsoring States

• Michigan
• Georgia
• Iowa
• Oklahoma
• Pennsylvania
What Is Internal Curing

• Internal Curing (IC) has been defined in 2013 by the American Concrete Institute as: “a process by which the hydration of cement continues because of the availability of internal water that is not part of the mixing water.”
What are the Benefits of IC

- Reduced Autogenous Shrinkage
- Increased Cement Hydration
- Improved Curing when Short Cure Times are Permitted

[Graph showing autogenous shrinkage strain over time]

Barrett (2013)
Applications

- Bridge Decks
 - Shown to reduce cracking
 - Long service life

- High Early Strength Patches and Overlays
 - Reduced built-in-stress caused shrinkage restraint
 - Increased water curing after opening

- Note: Research underway to determine the influence of IC on curling and built in stress

- Note: Reduction in curing time is underway
Internal Curing Agents - LWA

• IC Concrete is most commonly made by replacing a portion of the fine aggregate in concrete with prewetted fine light weight aggregate LWA.

• Water remains in the fine LWA during mixing and until the time of set.

• At the time of set capillary stresses developed in the concrete draws the water out of the fine LWA and curing the concrete section.
Internal Curing Agents - SAP

• Superabsorbent Polymers (SAP) are an alternative to LWA and are used to absorb additional mix water before setting (additional mix water is added to the mixture that results in a portion of the pore solution being absorbed by the SAP that is not considered in determination of the w/cm).

• The Internal Curing Specification is developed for LWA with potential SAP applications on the horizon and a test for absorption in the appendix.
Guide Specification Internal Curing

• Author- Dr. Jason Weiss, Oregon State University
• Expert Task Group
 1. John Staton, Michigan DOT
 2. Josh Freeman, Pennsylvania DOT
 3. Don Streeter, New York DOT
 4. Steve Gillen, Illinois Tollway
 5. Mike Byers, Indiana ACPA
 6. Tommy Nantung, Indiana DOT
 7. Brian Killingsworth, NRMCA
 8. Dave Meggers, Kansas DOT
 9. Reid Castrodale, ESCSI
 10. Jon Ries, ESCSI
 11. Justin Moderie, Oregan DOT
Guide Specification Internal Curing

Table of contents
I. Introduction - what is internal curing
II. Internal Curing Map Brief
 A. Internal Curing Concept
 B. Mix Proportioning
 C. Operations
 D. Potential Applications
Guide Specification Internal Curing

III. Guide Specification
 A. How to Use the Guide
 B. Additional Internal Curing Resources
 C. Websites Related to Internal Curing
 D. Standard Practices
 1. Scope
 2. References
 3. Terminology
 4. Materials
Guide Specification Internal Curing

5. Sampling
6. Proportioning
7. Concrete Acceptance Requirements
8. Quality Control
9. Test Reports
10. References

IV. Appendix A- The Absorption of Superabsorbent Polymers for use in Portland Cement Base Concrete Systems
What is Currently Missing

- Currently, there are several groups ‘trying internal curing’ but we do not have a ‘best practices’ or ‘case studies’ document
- The US is rapidly implementing this (more rapidly than other countries)
- A listing of case studies of where this was used, what was obtained and the cost-benefits would be useful to other agencies

This would also help to track performance over time and to keep track of projects for monitoring
Guide Specification Internal Curing

Future-

• Move it into AASHTO Specification
• Develop Detailed Case Studies
 – Bridge Decks
 – Concrete Overlays
 – Concrete Pavement Patching
• Development Detailed Training Video