Changes in Cement – Implications for Performance and How We Move Ahead

Jason Weiss, wjweiss@purdue.edu, Purdue University
Cement Fineness Over Time

Perspective on Fineness
Review of an Early Paper
Shrinkage
Paste Volume
Joint Damage
Amount of C_3S
New Cements
Optimize
Discuss and Conclude

Cement Fineness Over Time

- Surveys for Type I
- CCRL Type I or I/II
- CCRL Type II or II/V

Bentz et al. 2008
A Bit of Perspective

- Over the last 20 years I have been involved in several discussions on cement fineness
- Today I will expand to include an aspect of chemistry as well
- Many seem to take on the approach that was used to find Frankenstein’s Monster
- Grab a pitchfork and torch and let’s start our discussion on cement fineness
Increasing Fineness
1970 E. C. Higginson, Conc Const

Perspective on Fineness
Review of an Early Paper
Shrinkage
Paste Volume
Joint Damage
Amount of C₃S
New Cements
Optimize
Discuss and Conclude

1. Bleeding is reduced (more so non-AEA)
2. Increases the water requirement
3. Workability in AEA less pronounced
4. AEA air-void system not significantly affected
5. 28-day f′c increases, at 1 year little dif.
6. Slight decrease in the static modulus
7. Influences the drying shrinkage
8. Resistance to FT decreases
9. Accelerates ASR if a 100% reactive aggregate is used

All Explained by Surface Area and First Principles
Increasing Fineness
1970 E. C. Higginson, Conc Const

1. Bleeding is reduced (more in non AEA)
2. Increases the water requirement
3. Workability in AEA less pronounced.
4. AEA air-void system not sig. affected
5. 28-day f’c increases, at 1 year little dif.
6. Slight decrease in the static modulus
7. Increases the drying shrinkage
8. Resistance to FT decreases
9. Accelerates ASR if a 100% reactive aggregate is used
Effect of Fineness
1970 E. C. Higginson, ASTM

- ‘Fineness has a considerable effect on the drying shrinkage of concrete’ in summary from concrete construction; however when one looks at the ASTM article something new emerges.
Cement Fineness Over Time

Perspective on Fineness
Review of an Early Paper
Shrinkage
Paste Volume
Joint Damage
Amount of C_3S
New Cements
Optimize
Discuss and Conclude

Perspective on Fineness Over Time

Well off the page 6200

Cement Fineness Over Time

Bentz et al. 2008
Effect of Fineness
1970 E. C. Higginson, ASTM

- ‘Fineness has a considerable effect on the drying shrinkage of concrete’

1970 E. C. Higginson, ASTM

- ‘Fineness has a considerable effect on the drying shrinkage of concrete’

Nearly Double
14 Days
Effect of Fineness
1970 E. C. Higginson, ASTM

- ‘Fineness has a considerable effect on the drying shrinkage of concrete’

1.3 Times
Nearly Double
120 Days

FIG. 6—Effect of fineness of cement on drying shrinkage of 3 by 3 by 15-in. bars after 14-day fog curing, followed by drying in 50 percent relative humidity.
Effect of Fineness
1970 E. C. Higginson, ASTM

- ‘Fineness has a considerable effect on the drying shrinkage of concrete’
- Often missed …‘Careful study of the water content of the mixes …. shrinkage may be attributed to higher water requirements’ 1-2% paste increase
Looking at shrinkage of the components

Aggregate generally does not shrink

Paste is the portion that shrinks

Shrinkage is a paste property

Shrinkage of Components (L’ Hermite, Review 1960’s)

Drying Time

Measured Shrinkage

Concrete

Aggregate

Paste
This Work Required Battling Many Widely Held Thoughts – $V_{_{\text{Paste}}}$

- Dutron (1956) shares data, followed by L’Hermite (1960 stating little influence)
- Point to discussion on volume of paste which has been ongoing since the 1920s
- 1950’s see this come to many meetings (int’l cement, TRB etc)
- Pickett (‘65) and others

$$\varepsilon_{_{\text{Concrete}}} = \varepsilon_{_{\text{Paste}}} (1 - V_{_{\text{Agg}}})^n$$
A Look at Shrinkage and Paste Volume

Perspective on Fineness
Review of an Early Paper
Shrinkage Paste Volume
Joint Damage
Amount of C₃S
New Cements
Optimize
Discuss and Conclude

Relative Shrinkage (%)

w/c=0.42; No Air; 564 lb/yd³ Cement

In CE 530
A Slogan
28 is Great

5 to 6% Shrinkage Per 1% Paste Change

Assuming 2.3% Entrapped Air

Aggregate Volume (%)
• Shrinkage can be related to cracking
• Restrained shrinkage cracking and free shrinkage are non-linearly related

Radlinska et al. 2008
First Main Conclusion

- Simply said shrinkage is related to the volume of the paste.
- If we want to reduce shrinkage and restrained shrinkage cracking we want to minimize the paste.
- Sometimes this is done easily (in mixtures with too much cement) in other mixtures this will require optimizing the aggregate gradation
- If one goes too low … transport properties can increase substantially ….
Topic Two – Preferred Chemistry

• While fineness gets a lot of coverage, others will talk about the role of chemistry – Calcium silicates, calcium aluminates, etc.

• Many times ‘people’ prefer high C$_3$S materials due to the need for early opening or formwork removal.
Examine Hydration Reactions and the Role of Cement Chemistry

- **Tricalcium Silicate (C₃S)**

 \[
 C_3S + 3H \rightarrow C_2SH_2 + CH
 \]

 \[
 C_3S + 3H \rightarrow C_{1.5}SH_{1.5} + 1.5CH
 \]

- **Dicalcium Silicate (C₂S)**

 \[
 C_2S + 2H \rightarrow C_2SH_2
 \]

 \[
 C_2S + 2H \rightarrow C_{1.5}SH_{1.5} + 0.5CH
 \]

Variations can occur I have shown like equations (Bouge)
Examine Hydration Reactions and the Role of Cement Chemistry

• Tricalcium Silicate (C_3S)

\[C_3S + 3H \rightarrow C_2SH_2 + CH \]
\[C_3S + 3H \rightarrow C_{1.5}SH_{1.5} + 1.5CH \]

• Dicalcium Silicate (C_2S)

\[C_2S + 2H \rightarrow C_2SH_2 \]
\[C_2S + 2H \rightarrow C_{1.5}SH_{1.5} + 0.5CH \]

• C_3S requires more water

Variations can occur I have shown simple, like eqns (Bouge)
Examine Hydration Reactions and the Role of Cement Chemistry

- **Tricalcium Silicate (C\textsubscript{3}S)**
 \[
 C_3S + 3H \rightarrow C_2SH_2 + CH
 \]
 \[
 C_3S + 3H \rightarrow C_{1.5}SH_{1.5} + 1.5CH
 \]

- **Dicalcium Silicate (C\textsubscript{2}S)**
 \[
 C_2S + 2H \rightarrow C_2SH_2
 \]
 \[
 C_2S + 2H \rightarrow C_{1.5}SH_{1.5} + 0.5CH
 \]

- C\textsubscript{3}S requires more water and produces more calcium hydroxide

Variations can occur I have shown simple, like eqns (Bouge)
Some Comments About Calcium Hydroxide (CaOH$_2$; CH)

- CH forms in solution and deposits (in/on)
- CH deposits on aggregate surfaces (few to 20 μm) as stage III begins (before set)
- Important in discussing ITZ (exists or no)

Some Comments About Calcium Hydroxide (CaOH$_2$; CH)

- CH forms in solution and deposits (in/on)
- CH deposits on aggregate surfaces (few to 20 μm) as stage III begins (before set)
- Important in discussing ITZ (exists or no)
CaOH$_2$ and Durability

- Calcium Hydroxide (Portlandite, CH, CaOH$_2$) is related to many aspects of concrete durability
 - 15 – 25% of the system
 - CH contributes (slightly) to strength
 - CH is soluble
 - CH leaches (dissolve), increasing porosity which is important for low w/c concrete
 - Marchand et al. w/c 0.6 – 3x; w/c 0.4 – 15+ x
 - CH carbonates reducing pH (depassivates reinforcing steel)

CaOH$_2$ and Durability

- Calcium Hydroxide (Portlandite, CH, CaOH$_2$) is related to many aspects of concrete durability
 - 15 – 25% of the system
 - CH contributes (slightly) to strength
 - CH is soluble
 - CH leaches (dissolve), increasing porosity which is important for low w/c concrete
 - Marchand et al. w/c 0.6 – 3x; w/c 0.4 – 15+ x
 - CH carbonates reducing pH (depassivates reinforcing steel)
Joint Deterioration and CH

- CH plays a role in salt/joint durability (Ca-oxychloride)
- Recent research from Peterson et al. and Farnam et al. That CH reacts with the CaCl₂

\[3Ca(OH)₂ + CaCl₂ + 12H₂O \rightarrow CaCl₂·3Ca(OH)₂·12H₂O \]

- Phase change that results in a massive volume change (~ 30%)
Calcium Oxychloride (from LTDSC)

- Preliminary results examining how SCM can reduce joint damage
- Material sources vary and this is limited

Villani et al. in preparation
Role of Supplementary Cementitious Materials

Perspective on Fineness
Review of an Early Paper
Shrinkage
Paste Volume
Joint Damage
Amount of C₃S
New Cements
Optimize
Discuss and Conclude

- Silica Fume, Slag, Fly Ash Class C, Fly Ash Class F
- Pozzolanic Reaction
 - CH reacts with water and silica/alumina
 - This results in less CH to react
- Dilution Effect – When we replace a volume of cement with a SCM we
 - Reduce the CH that is formed
 - Reduce the permeability
Calcium Oxychloride (from LTDSC)

- Preliminary results examining how SCM can reduce joint damage
- Material sources vary and this is limited
I am starting to work on the next phase of this research (fundamental/database)

I believe we need to better understand Ca-Oxy formation as it relates to chemistry and to relate this to field performance

I would like to collect binders as people are building this year and in coming years and to relate the performance of this new rapid test, to lab tests and ultimately to field performance

I am hoping that as we do this there could be support for this important problem

Happy to discuss with those interested
Topic 3 - Effect of Fineness
1970 E. C. Higginson, ASTM

Perspective on Fineness

Review of an Early Paper

Shrinkage

Paste Volume

Joint Damage

Amount of C_3S

New Cements

Optimize

Discuss and Conclude

• “It might then be possible to specify and obtain cement with an optimum grading for a specific use”

• Some discussion revolves around ‘performance’
Studies of Fineness and Cracking

- Chariton and Weiss (2002) – Compared a Type I and III with the same chemistry but different fineness. III cracked earlier.
- Bentz et al. 2008 – Compared two cements (310, 380) and noticed lower heat release, less autogenous shrinkage and lower cracking in coarse cement.
- Coarse (50C), Fine (65C)
- Performance was not equal, strength etc.
Main Observations

- Findings are similar to HSC, faster reaction, higher E, lower \(\Psi \), increased heat, and more CSH (cap stress)
- Cracking increases for HSC
 - Creep (less relaxation)
 - Stiffness increases (\(\alpha f'c \))
 - Cement contents, heat increase

\[
d\varepsilon (t, \xi) = \frac{d\sigma (\xi)}{E_\sigma (\xi)} + d\varepsilon_{SHR} (\xi) + d\sigma (\xi) \frac{\phi (t, \xi)}{E_{28}}
\]

Weiss 1999
We Also Looked a Lot at this Issue When Looking at PLC Cements

- Bucher et al. (2009) limestone powders were added to a cement separately.
- Again, we need to note that these are not equivalent performance.
- We then started testing some of the PLC systems which I think really start to shine light on this discussion in a new way.

Bucher et al. 2009
Topic 3 - Effect of Fineness
1970 E. C. Higginson, ASTM

- “It might then be possible to specify and obtain cement with an optimum grading for a specific use”
- Some discussion revolves around ‘performance’
- Maybe we need to step back and tell the chef what we want and not ingredients/how to assemble
Lets Look at a System

- Similar performance is targeted
- PLC is generally ground finer than OPC
 - PLC requires more grinding
 - Higher fineness may act as a nucleating agent to increase early age strengths
- Higher reaction rates may show benefits of blending with other supplementary materials
Examining Systems with Differing Blaine Fineness Numbers

Perspective on Fineness
Review of an Early Paper
Shrinkage
Paste Volume
Joint Damage
Amount of C₃S
New Cements
Optimize
Discuss and Conclude

Barrett et al. 2012
Shrinkage and Cracking (Barrett et al. 2012)

- Used a commercially interground cement
- No increase in cracking tendency despite a higher Blaine fineness (for PLC) due to changes in PSD

Barrett et al. 2013
A Bit of Perspective

- Over the last 20 years I have been involved in several discussions on cement fineness
- Many seem to take on the approach that was used to find Frankenstein’s Monster
- Some things to consider
 - Who wants a lower/higher fineness and why
 - What levers do we have/think performance
 - What else may be changing
Open Discussion

• Some things to consider
 – Who wants lower/higher fineness; C₃S/C₂S
 • Contractors/Producers
 • Opening to traffic; use for construction
 • Meeting Specifications (f’r; RCPT; when linked to a time like 7, 28, 56 days.....)
 – What levers do we have/think performance
 • Should we be thinking about binder systems
 • Specifications can limit SCM; blends etc
 • Should we be thinking of using maturity for other properties with early tests to ‘accept’ based on TB that provide values at 91 or 120 days
 • Could do this already for formation factors for example...
Conclusions

- Shrinkage is primarily driven by the volume of paste in a system
- CH increases with C_3S making concrete more susceptible for Ca-Oxy at joints
- There are blended systems that can balance size and chemistry but these will need to be optimized and need new rules of thumb – Cant simply say fine is bad
- We have prescriptive specifications … may we be ready to think performance
- Think about specs – What they drive
Questions and Request

- Again, for those interested in joining into a program where you can send me cementitious materials and mixture designs being used for pavements, I would be glad to determine the amount of oxychloride and work to provide links between the fast test, the longer test and field performance…. Let's discuss.

- Think we can have a test by years end and can develop the needed database of performance.