Initiating Cracks in PCC Pavements

by

Malcolm K. Lim, PE

Technology Transfer Concrete Consortium (TTCC) and National Concrete Consortium (NCC)
Fall 2009, St Louis, MO

Better Performance Through Innovative Designs
Gee, how could anybody be opposed to building more roads?

Every time I see highway construction...

...some protester has already put up a sign.

END CONSTRUCTION
PCC Pavement

PCC Pavement showing Overall Pavement Thickness

PCC Pavement Surface
Dowel Baskets & Saw Cut Joints on Pavement
Common Malfunction Mechanism In PCC Pavements

- Horizontal translation reduces the effectiveness of the dowel bar and affects load transfer efficiency.
- Longitudinal translation causes the bearing stresses to increase resulting in dowel looseness and affect load transfer efficiency.
- Horizontal skew and vertical tilt results in restraining joint movement due to thermal effects.
- Vertical translation may result in spalling and loss of load transfer efficiency.

“Guidelines for Dowel Alignment in Concrete Pavement”, NCHRP, February 2009
Controlling Random Cracking

Random cracking in Portland cement concrete pavement is primarily controlled by two important factors:

- concrete shrinkage behavior and restraint condition
Saw Cutting Joints

Saw cutting joints in concrete pavements create vertical weakening planes in the concrete pavement to induce the cracks along their controlled axis. To controlled cracking in a PCC Pavements, joint sawing procedures are established. In general, the time of joint sawing should consider the following limiting criteria:

• The joint sawing should be performed before stresses develop in the pavement that are large enough to cause cracking.
• The joints must not be sawed until the pavement is strong enough to support the weight of the sawing equipment and operator, and also strong enough to avoid excessive raveling due to the forces introduced by the cutting blade.
Saw Cutting Joints

- Saw cutting allows the concrete segments to move and deform freely, lowering the stress build up in the pavement.
- The basic purpose of saw cutting joints is to encourage shrinkage restraint cracking at predetermined locations allowing for visually appealing finish.
- Saw cuts at the “right” location maximizes the load transfer ability when the crack runs through the center of the dowel bar.
Types of Saw Cutting

EARLY ENTRY SAW CUTTING
• typically 1 - 1.5 in deep
• typically 1 to 2 hrs after concrete placement
• utilizes lightweight equipment
Types of Saw Cutting

CONVENTIONAL SAW CUTTING

- typically $\frac{1}{4}d$ to $\frac{1}{3}d$ deep
- typically 6 to 12 hrs after concrete placement
- utilizes conventional saw cutting equipment
Predictability of Cracking

Based upon a 10 in. Thick Slab
Concept

Current saw cutting practice adds a weakened plane to the top of the PCC pavement thereby allowing it to crack at the desired location – the weakest link. This happens from the top of the pavement down.

The research capitalizes on the weakest link principle to develop a weakened plane within the PCC pavement.
Factors Affecting Cracking in PCC Pavements

- Ambient Temperature
- Depth of Saw Cut
- Timing of the Saw Cut
- Concrete Mix and Subgrade
- Location of identifying marking
Factors Affecting Cracking in PCC Pavements

- Ambient Temperature – influences strength development in the concrete and optimal time to begin saw cutting
- Depth of Saw Cut
- Timing of the Saw Cut
- Concrete Mix and subgrade
- Location of identifying marking
Factors Affecting Cracking in PCC Pavements

- Ambient Temperature
- Depth of Saw Cut
 - Early age saw cutting 1-1.5 in. deep cut
 - Conventional saw cutting $\frac{1}{4} d$ or $\frac{1}{3} d$
- Timing of the Saw Cut
- Concrete Mix and subgrade
- Location of identifying marking
Factors Affecting Cracking in PCC Pavements

- Ambient Temperature
- Depth of Saw Cut
- Timing of the Saw Cut
 - Early Age saw cutting – shortly after initial set
 - Conventional: Too early - spalling and raveling along the joint face
 - Conventional: Too late: uncontrolled cracking in some cases
- Concrete Mix and subgrade
- Location of identifying marking
Factors Affecting Cracking in PCC Pavements

- Ambient Temperature
- Depth of Saw Cut
- Timing of the Saw Cut
- Concrete Mix and subgrade
 - Regional variations
- Location of identifying marking
Factors Affecting Cracking in PCC Pavements

- Ambient Temperature
- Depth of Saw Cut
- Timing of the Saw Cut
- Concrete Mix and subgrade
- Location of identifying marking
 - affects the location of the saw cut. Needs to be centered on the dowel bar
Objective of Research

- Develop a means whereby cracking and the location of the crack is predictable - develops across the center of the dowel bar
- Create a weakened plane within the PCC pavement
- Utilize current saw cutting techniques – minimize saw cut depth
- Minimize the effects of an off centered saw cut – Longitudinal Translation
- Increase the predictable behavior in PCC pavements
Goals of Initiator Research

Research has been underway to reduce the effects of the following factors:

• Ambient Temperature
• Depth of Saw Cut (reduce the initial depth)
• Timing of the Saw Cut (increase the window with conventional saw cutting practice and no change with early age saw cutting)
• Concrete Mix and Subgrade
• Location of identifying marking (allow for some longitudinal translation)
Goals of Initiator Research

Research has been underway to reduce the effects of the following factors:

- Ambient Temperature
- Depth of Saw Cut (reduce the initial depth)
- Timing of the Saw Cut (increase the window with conventional saw cutting practice and no change with early age saw cutting)
- Concrete Mix and Subgrade
- Location of identifying marking (allow for some longitudinal translation)
- Increase predictable behavior probability
Research Emphasis

In order to minimize the effects of timing, location, depth of the saw cut and predictable behavior, research looked into introducing cracking initiators and the following factors:

- different initiator shape factors
- different initiator surface areas
- location of initiators
- surface reduction
- critical surface area
Construction of Test Slabs
Schematic of Test Slabs

Concrete Slab (Typ.)
PVC Pipe (Typ.)
Treated Rod (Typ.)
Crack Initiator (Typ.)

Concrete Slab 2'X10'X9''
PVC Pipe (Typ.)
Treated Rod (Typ.)
Crack Initiator (Typ.)

SECTION - AA
Tensioning of Test Slabs
Schematic of Test Slabs Cracked

SECTION - AA

Concrete Slab (Typ.)
Crack Inhibitor (Typ.)
PVC Pipe (Typ.)
Treated Rod (Typ.)

Concrete Slab 2'X10'X9''

Treated Rod (Typ.)
PVC Pipe (Typ.)
Crack Inhibitor (Typ.)

Force
Tension Force
Controlled Cracked

Uncracked Slab

Cracked Slab
NCPTC 2009 study*

- **1/3 depth saw cut**
 - Average Cracking time: 0.2 to 2.2 days
 - Strain in concrete at the crack time: 6.6 \(\mu \varepsilon \) - 206.6 \(\mu \varepsilon \)

- **1/4 depth saw cut**
 - Average Cracking time: 0.2 to 6.5 days
 - Strain in concrete at the crack time: 23.5 \(\mu \varepsilon \) - 189.7 \(\mu \varepsilon \)

- **Early Age saw cut**
 - Average Cracking time: 1.4 to 24.1 days
 - Strain in concrete at the crack time: 22.8 \(\mu \varepsilon \) - 259.2 \(\mu \varepsilon \)

*National Concrete Pavement Technology Center, Center for Transportation Research and Education, Iowa State University
Crack Development in Ternary Mix Concrete Utilizing Various Saw Depths, February 2009*
Calculated Strain in Concrete Test Slabs

- $P_{\text{max}} = 50K$
- Diameter of Steel Rod = $\frac{3}{4}$ in.
- Stress(steel) = 37.5 ksi
- Strain(steel) = 1,300 $\mu\varepsilon$
- Ratio: $\varepsilon_{\text{steel}} / \varepsilon_{\text{concrete}}$
- Calculated $\varepsilon_{\text{concrete}} = 130 - 161 \mu\varepsilon$
- Uncracked at 120 days
Summary of Testing Results

<table>
<thead>
<tr>
<th>Shape of Initiator</th>
<th>Number Tested</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>“V” Shape – covering approx 60% of CSA – ¼ in. to 1.5 in. thickness</td>
<td>60 Slabs</td>
<td>Crack at initiator, 0.001 in. pretty straight</td>
<td>Cracking very predictable</td>
</tr>
<tr>
<td>Square/circular shape initiator – covering approx. 30 -40% of CSA, ¼ in. to 1.5 in. thickness</td>
<td>60 Slabs</td>
<td>Crack at initiator – 0.001 to 0.01 in. cracking at surface</td>
<td>Cracking controlled. ¾ in. thickness yield highly predictable results</td>
</tr>
<tr>
<td>Rectangular shape with rounded edges initiator – covering 10 - 20% of CSA, ¼ in. to ¾ in. thickness</td>
<td>200+ Slabs</td>
<td>Crack at initiator – 0.001 in. cracking at surface</td>
<td>Cracking controlled ¼ to ¾ in. thickness yield highly predictable results – up to 120 days after placement</td>
</tr>
</tbody>
</table>
Different crack initiator shape factors

- Initial versions were utilized using a “V” shape factor, maximizing the area of separation around the “simulated” dowel bar.
- Testing has allowed revision of the shape factor to efficiently and effectively maximize the influence of the separation to allow for a controlled cracking – end result – circular, square and rectangular.
- Research also noted that the shape of the initiator affects the predictable behavior of the crack and is key in reducing the variability associated with cracking pattern.
- Surface area of the initiator ranged initially from 60%/ln section down to 16.5 %/ln section (conventional saw cutting reduces cross sectional area by 25% to 33%, early entry saw cutting reduces cross sectional area by 12%)
- Thickness of the initiator – affects cracking predictability
Pavement Critical Stressing Area

Critical Stressing Area
- Critical Stressing Area is the remaining concrete section. In a 10 in slab, the critical stressing area is reduced by 30%.

Current standard of practice is to
- reduce the overall area by 1 in. deep or ¼ d or 1/3 d.
- difficult to predict overall cracking behavior – affected by slab restrained conditions.

With Initiator

Conv. Saw Cutting
Pavement Critical Stressing Area

Critical Surface Area
- Governing area is typically the shortest distance within the weakened zone
- Initiators reduces the critical surface area to the area between the bottom of the saw cut and the top of the initiator, as oppose to the bottom of the saw cut to the bottom of the slab
- Initiator influences the cracking behavior – making it more predictable
Location of Initiator

Location of initiators

Bottom of the test slabs
- reduction in critical stressing area, minimum effects noted.
- Alignment of slab reduction saw cut and initiator is critical
- Overall size had to be greater.

Middle of the test slabs
- reduction in critical stressing area. The location provides a break within the slab, thereby minimizing the critical stressing area factor.
- greater effect on crack behavior prediction
- alignment of saw cut and initiator is minimized
- critical section is between the top of the initiator and the bottom of the surface separation
Overall Pavement Surface Reduction

Surface Reduction at the Top

- Separation at the top of the slabs, in line with the initiator, were made with different depths – with the shallowest being 1/8 in. deep.
- Crack formation was noted at the bottom of the separation. Initiator increases the influence of the reduced surface, with the area between the bottom of the reduced surface and the top of the initiator being the governing factor.
- A 1 in. deep saw cut would be more than sufficient to include the cracking propagation attributes in the PCC pavement.
Timing

- Slabs have been stored up to 120 days after placement and tensioned to obtain crack at the predicted location
- Slabs cracked only at the initiators
- Slabs cracked when the strain in the concrete reached 130 to 160 μe
Surface Reduction Alignment

- Current standard practice of saw cutting does not have adequate controls to always predict the crack path – especially in longitudinal translation cases.
- With regularly spaced initiators and with the weakest link principal, the crack will occur at the weakest link, shortest possible distance.
- If the reduction in area within a slab is not immediately at the center of the initiator, the crack will originate from the reduction in area within the slab and will run along side of the initiator.
- Crack in concrete is influenced by the reduction in the overall cross sectional area.
- With initiators in place, the initiator influences the overall pattern of the crack above the dowel bar. Without the initiator, the crack path is unpredictable.
- Restrains conditions can affect the crack propagation below the dowel.
Stresses Concentration on Dowel Bar

- Stresses on dowel bar are highest at the top and bottom of the dowel bar.
- Sides of the dowel bar do not aid in shear stress distribution from the concrete.
- Smaller diameter bars result in higher stress concentration on the top and bottom of the dowel bar.¹

Design of Initiator

Design Considerations

- Shape Factor
- Size of Initiator
- Location of Initiator
- Easy to install on dowel bar
- Steady
- Smooth
- Overall shape factor and weight affecting transportation of baskets
- Number of Initiator Needed – based on overall surface reduction
Design of Initiator

- Designed to be welded to the dowel bar
- Initiator is designed not to influence the stacking of the dowel bar
- Gaps in the initiator to reduce weight
- Welded at neutral stress zone on the dowel bar
- Rounded edges
- Smooth face
Design of Initiator

- Thickness: \(\frac{1}{4}\) in. to \(\frac{3}{8}\) in. thick
- Number of Initiators: between dowel bars
- Recommended Surface Reduction: 1 in.
- Depth of Initiator:

<table>
<thead>
<tr>
<th>Slab Depth</th>
<th>Initiator Thickness</th>
<th>Depth of Initiators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 10 in.</td>
<td>(\frac{1}{4}) in.</td>
<td>2 in.</td>
</tr>
<tr>
<td>> 10 in.</td>
<td>(\frac{1}{4}) in. to (\frac{3}{8}) in. thick</td>
<td>2.5 in.</td>
</tr>
</tbody>
</table>
Predictability of Cracking With Initiator

Based upon a 10 in. Thick Slab
SUMMARY

- Increase cracking predictability.
- In order to influence the cracking formation, a small separation at the top of the PCC pavement is needed. The depth of separation can be minimized to an inch or less to allow for a visually pleasing appearance.
- Utilizes current saw cutting methods.
- Location of the initiator – inline with the dowel bar maximizes the influence on the location of the crack.
- The initiator influences the behavior of the crack – predictable cracking behavior.
- Overall thickness of separation can be $\frac{1}{4}$ to $\frac{3}{8}$ inch wide – slab depth dependant.
- The initiator provides a discontinuity within the PCC pavement.
- The initiator reduces the critical stressing area to form the crack – area above the initiator.
- The ability to control cracking characteristics. The precise location (longitudinal translation approx 1 in.) of the saw cut becomes a little less critical.
- May influence the saw cutting window.
- Provide savings through better performance of the pavement slab.
QUESTIONS?

Better Performance Through Innovative Designs
Contact Info:
Malcolm K. Lim, PE
LimCMT, Inc.
109 Bernard Drive
Buffalo Grove, IL 60089
E: malcolm.lim.314@gmail.com
P: 847-321-5891

Better Performance Through Innovative Designs