The information included herein does not represent a specific project, but may be used as an example of what should be included for a PCC bonded or unbonded overlay project.

The location map is helpful to the contractor when planning haul routes, traffic control, and staging.

The detour map is used only if roadway is closed to traffic during construction. If through traffic is allowed during construction, typically traffic control zones are kept to a 0.25 mile maximum length with the use of pilot cars as long as adequate sight distance is available. Construction zones that utilize pilot cars are typically 2.5 to 3 miles in length or no more than 10 minutes wait time per zone.

The title sheet shows general project information including name, description, jurisdiction, index of sheets, mileage summary, traffic, and engineering certification.

This index is representative of an overlay project (bonded or unbonded) with many details including: staging, traffic control, varying existing cross-sections, turn lanes, transitions for bridges and construction under traffic.

Sheets B.7 to L.2 are optional, depending on the scope of the project.
This sheet lists the survey symbols, utility legends, and survey control information. The control information is used to establish alignment for the project.

Benchmark information is used to establish alignment and elevation.

Section corner information or other control monuments may be necessary to establish alignment.
ESTIMATED QUANTITIES AND REFERENCE INFORMATION

ESTIMATED QUANTITIES

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item</th>
<th>Unit</th>
<th>Division 1</th>
<th>Division 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENHANCEMENT-IN-PLACE</td>
<td>CY</td>
<td>123.0</td>
<td>123.0</td>
<td>246.0</td>
</tr>
<tr>
<td>2</td>
<td>PAVING, TYPICAL RATES</td>
<td>CY</td>
<td>234.0</td>
<td>234.0</td>
<td>468.0</td>
</tr>
<tr>
<td>3</td>
<td>ROADWAY CONSTRUCTION, EARTH</td>
<td>CY</td>
<td>256.0</td>
<td>256.0</td>
<td>512.0</td>
</tr>
<tr>
<td>4</td>
<td>FLATWORK, TYPICAL RATES</td>
<td>LF</td>
<td>123.0</td>
<td>123.0</td>
<td>246.0</td>
</tr>
<tr>
<td>5</td>
<td>WALLS, TYPICAL RATES</td>
<td>LF</td>
<td>234.0</td>
<td>234.0</td>
<td>468.0</td>
</tr>
<tr>
<td>6</td>
<td>UTILITIES, TYPICAL RATES</td>
<td>LF</td>
<td>256.0</td>
<td>256.0</td>
<td>512.0</td>
</tr>
</tbody>
</table>

ESTIMATE REFERENCE INFORMATION

1. **PAVEMENT MILLING**
 - Profile milling will be required on this project, refer to Typical on sheet B.1 for locations and details. For unbonded or bonded overlays on unbound or composite pavement.
 - Meet the following requirements for profile milling:
 - Pavement milling equipment shall be equipped with automatic horizontal and vertical controls capable of milling existing pavement.
 - MILLING AT AN ELEVATION CORRESPONDING TO THE APPROVED PROFILE GRADE AND CROWN SLOPE WITH A TOLERANCE OF 0 TO -0.5 FT.
2. **PAVEMENT MILLING**
 - The contractor is required to sweep the pavement surface in areas that the milling equipment did not intersect and at the point of the project.
 - The requirements are the same as per the specifications of the Standard Specifications.

Projects

Projects are sometimes separated into divisions to track quantities and payment. For example, Division 1 is funded separately than Division 2 on this sample project.
EXISTING SECTION AND MILLING SHEET

Bonded Overlays
- Milling of existing pavement may be necessary to:
 1. achieve the proposed profile,
 2. reduce high spots to ensure minimum overlay thickness,
 3. remove significant surface distortions (2 inches or greater), and
 4. match curb or adjacent structures.
- For bonded overlays, milling to improve bonding is a lower priority than items 2), 3), and 4). A minimum of 4 in. PCC or 3 in. HMA of remaining pavement is recommended after milling.

Unbonded Overlays
- Refer to table 9 of the Guide to Concrete Overlays, Third Edition. If using a 1 in. HMA separation layer and faulting is >3/8 in., grind pavement to remove faulting or increase HMA to 1 1/2 inches thickness.
- If faulting is ≤ 3/8 in., no action is required. If using a geotextile separation layer, and faulting is > 1/4 in., grind pavement to remove faulting. If faulting is ≤ 1/4 in., no action is required.

This sheet shows the typical cross section for milling of existing pavement as well as a tabulation of milling thickness and areas.

<table>
<thead>
<tr>
<th>Location</th>
<th>Pavement Milling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Identification</td>
<td>Station To Station</td>
</tr>
<tr>
<td>Remarks</td>
<td></td>
</tr>
</tbody>
</table>
This sheet includes the typical cross sections for PCC bonded and unbonded overlays. A tabulation is given for specific dimensions and quantities.

Note: The contractor shall pave proposed shoulders thru all unpaved side road, paved side roads, and entrance intersections. At the existing paved intersections, the existing pavement will be removed.

Typical section shown may be modified appropriately in areas of super elevated curves or other locations specifically designated by the engineer. At existing super elevated areas match existing cross slopes and transition rates.

Excavation quantities include trench width (BW) plus 1' x both Lt. & Rt. sides.

Provide a vertical clean edge similar to milling machine results.

Shoulder material as specified on sheet B.8.

Refer to jointing and widening details on sheet B.2

Refer to milling detail on sheet B.1.

Milling should be considered to reduce high spots, remove distortions, and match curb or existing structures.

Shoulder width varies by project.
BONDED PCC OVERLAY JOINTING (WITH AND WITHOUT WIDENING)

COC-B TIE BAR LOCATION WITH WIDENING

KEYED NOTES:
1. Epoxy coated No. 4 tie bar 36" long at 30" spacing. Drill and epoxy bars into existing concrete.
2. Full depth plus 1/2".
3. Existing widening unit:
 - If Asphalt, remove unit.
 - If concrete, unit may remain if stable, and 3' wide.
 - If no widening unit, excavate and place drainable subbase.

COA-B TIE BAR LOCATIONS WITH WIDENING

KEYED NOTES:
1. For bonded concrete overlays <5" and in cold weather states with drainable subbase under the paved shoulder/widening unit, secure the tie bar to the asphalt pavement, using a minimum of three staples or epoxy. For concrete overlays >5" and no drainable subbase, do not use tie bars in the paved shoulders/widening unit.

COA-B TIE BAR LOCATIONS WITH WIDENING

KEYED NOTES:
1. Consideration shall be given to placement of epoxy coated tie bar at mid-depth. Placement must allow adequate overlay thickness to accommodate medium sized aggregate under the bar and minimum 2" above the bar. Tie bars are No. 4 bars 36" long @ 30" centers.
2. Full depth plus 1/2".
3. Existing widening unit:
 - If Asphalt, remove unit.
 - If concrete, unit may remain if stable, and 3' wide.
 - If no widening unit, excavate and place drainable subbase.

COB-C = Concrete on Asphalt - Bonded Overlay COA-B = Concrete on Asphalt - Bonded Overlay

This sheet illustrates the jointing layout for PCC bonded overlays and widening units. For bonded overlays on concrete, new joints in the overlay shall align with existing joints. Transverse joints shall be cut to full depth plus 0.5 in. If construction is completed under traffic, a 4 ft paved shoulder is recommended.

FULL DEPTH SAWCUT

(COC-B) CONCRETE ON CONCRETE - BONDED OVERLAY (Transverse and longitudinal joints detail in concrete overlay of existing concrete pavement)

COC-B or COA-B

CONCRETE ON CONCRETE OR ASPHALT - BONDED OVERLAY WITHOUT WIDENING

KEYED NOTES:
1. If BCOC, then use full depth sawcut.
2. If BCOA, then use 1/3 sawcut.

GENERAL NOTES

1. Refer to "Design Lessons Learned" in the document "Guide for the Development of Overlay Construction Documents" for explanation on pavement widening drainage, location of tie bar, location of sawcuts, thickened edge restraint, and use of fibers.

CONCRETE ON ASPHALT - BONDED OVERLAY WITH WIDENING

GENERAL NOTES

1. Refer to "Design Lessons Learned" in the document "Guide for the Development of Overlay Construction Documents" for explanation on pavement widening drainage, location of tie bar, location of sawcuts, thickened edge restraint, and use of fibers.

CONCRETE ON CONCRETE - BONDED OVERLAY WITH WIDENING

GENERAL NOTES

1. Refer to "Design Lessons Learned" in the document "Guide for the Development of Overlay Construction Documents" for explanation on pavement widening drainage, location of tie bar, location of sawcuts, thickened edge restraint, and use of fibers.

Note:
Overlay joint width shall be equal to or greater than crack width of the existing slab. If "Y" is 0.50 in. or greater, the underlying crack width in the existing slab should be measured. If crack "Z" is 0.25 in. or greater, and existing pavement does not have dowel bars, the joints should be evaluated to determine if load transfer rehabilitation is required to eliminate faulting. If there are numerous joints with this condition, the existing pavement may not be a good candidate for a bonded overlay. The existing joints should be filled/sealed to prevent intrusion of mortar during overlay placement. In all cases, "X" must be ≥0.125 in.
UNBONDED PCC OVERLAY JOINTING (WITH AND WITHOUT WIDENING)

KEYED NOTES:

1. Consideration shall be given to placement of overlay panel so the bar at mid-depth does not protrude, yet adequate overlap distances to accommodate movement shall be established. Place overlay panel so top of panel is 12.0' above the bar. If overlay is 0.5' or more at mid-depth, place 1.5' above the bar. Note: Dimensions of panels may change based on project specifics.
2. Existing widening units:
 a. If any, remove units per location of overlap.
 b. If no existing units, excavate and place drainable subbase.
3. Nonwoven geotextile shall either daylight to ditch foreslope or terminate above drainable subbase or connect to working subdrain:
 a. L Joint
 b. T/3 Joint (do not sever bar)
4. For unbonded overlays greater than 6 inches thick, maximum joint spacing in feet is 1.5 times the overlay thickness in inches. Maximum joint spacing in feet is 2 times the overlay thickness in inches. Maximum joint spacing in feet is 1.5 times the overlay thickness in inches.

GENERAL NOTES:

A. For unbonded concrete overlays, consider locations for joint detail.
 a. If jointing is conducted using construction joints, joint detail must be in good condition and placed as shown.
 b. Tie widening unit with No. 4 epoxy coated tie bars, drill and epoxy or insert during overlay pour.
B. Before concrete pour, measure and document distance from centerline to outer edge of existing pavement. To establish sawcut between overlay and widening units, use documented measurements and locate sawcuts using the same measuring method.
C. Refer to "Design Lessons Learned", in the document "Guide for the Development of Concrete Overlay Construction Documents" for explanation on pavement widening, drainage, location of tie bar, location of sawcut, thickened edge, restraint and use of fibers.
D. For unbonded concrete overlays without widening, consideration should be given to daylighting geotextile and HMA separation layer to ditch foreslope or connect to working subdrain.

NEW HMA OR COMPOSITE PAVEMENT

For COC-U without widening, see detail above.

For COA-U without widening, consider geotextile above drainable subbase layer and daylight to ditch foreslope or connect to working subdrain.

This sheet includes jointing layout for PCC unbonded overlays and widening units. For unbonded overlays, new joints do not have to align with existing joints.

Consider 13.3oz/yd² @ 130 mls, typical weight geotextile, for unbonded overlays ≤ 4 in. thick.
Consider 14.7oz/yd² @ 170 mls, typical weight geotextile, for unbonded overlays ≥ 5 in. thick.
This sheet includes miscellaneous details for urban and rural PCC overlays. For unbonded overlays, it is critical to connect the separation layer to an acceptable drainage outlet.

MISCELLANEOUS DETAILS

EXISTING PAVEMENT
- Milling with Concrete
- Milling

CONCRETE OVERLAY
- Milling Detail When Leaving Existing Curb in Place
- Milling Detail When Removing and Replacing Curb
- Milling Detail of Curb Overlay

OVERLAY
- New Concrete Pavement
- Existing Material

SUBBASE
- Pavement

DRAINAGE OF SEPARATION LAYER INTO INTAKE

DRAWING OF SEPARATION LAYER - UNDERDRAIN SYSTEM
- Existing Pavement
- Existing Material
- Existing Granular Subbase
- Separation Layer
- Underdrain Trench
- Unbonded Concrete Overlay
- separation
- Excavation

RESERVOIR
- Geotextile Wrapped and Pinned

NOTES
- New Unbonded Concrete Overlay
- Previous Pavement Height Before Milling
- Existing Pavement
- Single Open-Threshold Curb Intake
- Waterproof Mastic Manhole Seal
- Chimney Internal Adjusting Rings
- Excavation Underdrain Trench Adjacent to the Existing Subgrade Underdrain Trench
- Drainage of Separation Layer - Underdrain System
- Construct Porous Drainage Trench Adjacent to the Existing Subgrade Underdrain Trench
- Material to an acceptable drainage outlet.
- Critical to connect the separation layer overlays. For unbonded overlays, it is critical to connect the separation layer to an acceptable drainage outlet.
This sheet provides typical profile transition details for PCC bonded and unbonded overlays. The transition length is dependent on the speed limit of the roadway. A common taper for vertical transition is 40:1. The thickness of the transition/reconstruction section must be designed with the underlying support conditions and anticipated traffic in mind.

Temporary Transition Details

- **Concrete Overlay**
 - Existing Pavement
 - Existing Side Road or Driveway
 - Asphalt Transition or Reconstruct with HMA or PCC

- **Concrete Overlay**
 - Mill and Fill Profile Transitions for Bonded Concrete Overlays on End Transition

- **Bonded Overlay on Concrete Transition**
 - New Bonded Overlay
 - Place Concrete Through Taper Area
 - Trim Subbase
 - Existing Concrete Pavement

- **Bonded Overlay on Asphalt Transition**
 - New Bonded Overlay
 - Place Concrete Through Taper Area
 - Trim Subbase
 - Existing Asphalt Pavement

- **Unbonded Overlay on Concrete Transition**
 - New Unbonded Overlay
 - Place Concrete Through Taper Area
 - Trim Subbase
 - Existing Concrete Pavement

- **Unbonded Overlay on Asphalt Transition**
 - New Unbonded Overlay
 - Place Concrete Through Taper Area
 - Trim Subbase
 - Existing Asphalt Pavement

Full-Depth Saw Cut

- Transition Area (at End of Overlay)
 - Full - Depth Saw Cut
 - Taper Milled into Surface

Unbonded Overlays

- New Unbonded Overlay
 - Place Concrete Through Taper Area
 - Trim Subbase

Bonded Overlays

- New Bonded Overlay
 - Place Concrete Through Taper Area
 - Trim Subbase

Transition Area

- Note: Recompress and Reshape Existing Subbase in Area of Transition and Reconstruction.

Underlying Support Conditions

- The thickness of the transition/reconstruction section must be designed with the relationship to the overlay thickness for the overlay plus existing thickness. It may require reconstruction to increase the thickness to provide for equal load-carrying capabilities as the overlay section.

Profile Transition Details

- USE 40:1 TAPER FOR SPEED 45 MPH OR GREATER; USE 25:1 TAPER FOR SPEEDS LESS THAN 45 MPH

- IF LESS THAN 5" THEN TAPER IS NOT NEEDED

Use

- Use 40:1 Taper for Speed 45 MPH or Greater, Use 25:1 Taper for Speeds Less Than 45 MPH

- If the section is under bridge, the existing pavement thickness may require reconstruction to increase the thickness to provide for equal load-carrying capabilities as the overlay section.

NOTE

- Recompress and Reshape Existing Subbase in Area of Transition and Reconstruction.

Sealing Layer

- Mill and Fill Profile Transitions for Bonded Concrete Overlays on End Transition

Concrete Overlays

- Existing Pavement
 - Existing Side Road or Driveway

Asphalt Overlays

- Existing Pavement
 - Existing Transverse Joint
RIGHT TURN AND BRIDGE APPROACH DETAILS

Notes:
1. Details shall be similar for construction on either side (by stationing) of roadway.
2. Construct minimum 8" granular material.
3. Pavement for auxiliary lane shall be constructed according to requirements specified for through roadway pavement.
4. For joint details see Standard Joint details.

This sheet illustrates a typical cross section for a right turn lane and a plan view of a bridge approach.
SHOULDER AND PAVED ACCESS DETAILS

Notes:
- Quantities have been determined on the basis of a design weight of 140 lbs. per cubic foot.
- Place and compact material to the dashed lines; then blade and shape to foreslope that portion.
- Place and compact granular material to the broken line in the outer 2' and roll with loaded truck tire.
- Existing shoulder surface to be shaped to a uniform cross slope and edge of pavement.
- Proposed shoulder material is not less than the thickness of the resurfacing.
- Quantity per location.
- Requires wedge shaped granular shoulder fillet.

SECTION A-A

Note:
- Uniform thickness fillets of hot mix asphalt shall be constructed.
- Fillet sizes as shown are recommended and shall be used for design and estimating purposes. The Engineer shall establish the size of each individual fillet to accommodate conditions at the site.
- Sawcut and Pavement Milling prior to placement of fillet will be required; both items will be paid for as Pavement Milling.
- Estimated at 4.5 lbs./cu. ft.
- Quantities as per location.

This sheet provides optional details and quantity tabulations for granular shoulders, paved shoulders and fillets for paved side roads with PCC overlay widening.

TYPICAL SECTION
FOR
GRANULAR SHOULDER
ADJACENT TO PCC WIDENING & OVERLAY

Location

Location

QUANTITIES

Location

QUANTITIES
GUARDRAIL AND PAVED SHOULDER DETAIL

1. 6" subgrade treatment not required on this project.
2. When guardrail posts are installed prior to construction of paved shoulder, nail 6" untreated form boards along the face of guardrail post for the length shown. This board is to prevent subgrade material from contacting the sides of the posts and altering the function of the guardrail.
3. Form board not required for final 2 posts.
4. Shoulder may be notched for final 2 posts or post sleeves may be installed through pavement.

8" HMA Paved Shoulder at guardrail. 7" PCC may be substituted with the following jointing layout:

- Match mainline pavement joint spacing. When mainline pavement is 8" or greater in thickness, place additional transverse joints in shoulder at mid-panel of the mainline pavement. Place longitudinal joint at W/2 from edge of mainline pavement when W is greater than 10' wide. Terminate longitudinal joint at transverse joints less than 10' in length.

- Compaction of HMA is required to face of guardrail post. Hand compaction will be allowed under guardrail. Removal & reinstallation of guardrail will be allowed with no additional payment.

- Normal Shoulder Width

- Normal Shoulder Width

Note:
- Follow jurisdiction standards for guardrail details.
QUANTITY TABULATIONS

POINTS OF ACCESS

Refer to Cross-Sections

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface Area

<table>
<thead>
<tr>
<th>Driveway</th>
<th>Size</th>
<th>Location</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APRONS

<table>
<thead>
<tr>
<th>Driveway</th>
<th>Size</th>
<th>Location</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUANTITY TABULATIONS

<table>
<thead>
<tr>
<th>PIPE COV.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LONGITUDINAL SUBDRAIN

SHOULDER AND BACKSLOPE

<table>
<thead>
<tr>
<th>Location</th>
<th>Station to Station</th>
<th>Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABULATION OF SAFETY CLOSURES

<table>
<thead>
<tr>
<th>STATION</th>
<th>CLASS</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABULATION OF SILT FENCE

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>STATION TO STATION</th>
<th>LENGTH</th>
<th>SIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAVEMENT MARKINGS

<table>
<thead>
<tr>
<th>Location</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMOVAL OF PAVEMENT

<table>
<thead>
<tr>
<th>Station to Station</th>
<th>PAYMENT TYPE</th>
<th>AREA</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABULATION OF EXISTING PAVEMENT

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>STATION TO STATION</th>
<th>PAYMENT TYPE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FULL-DEPTH PATCHES

SUBDRAIN, LONGITUDINAL, Patched 4"

<table>
<thead>
<tr>
<th>PATCHED</th>
<th>STATION</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPTIONAL QUANTITY TABULATIONS

This sheet provides sample tabulations of typical work items related to a PCC bonded or unbonded overlay. The work item tabulation will vary depending on the scope of the project.
This sheet is a placeholder to provide plan and profile information for the existing roadway where the PCC bonded or unbonded overlay is to be placed. The plan and profile for the existing pavement is used for reference only and, typically, the PCC overlay profile is not included in the design drawings.
STAGING AND TRAFFIC CONTROL NOTES

STAGING NOTES

1. Through traffic on Mainline shall be staged to allow work under traffic and work while detoured. Mainline detour route (refer to map on sheet A.1) shall be signed and maintained by the jurisdiction. The contractor shall provide a 2 week notice to the engineer before any detour use is allowed.

2. The contractor shall maintain access at all times for residents who live and work along mainline, including school bus traffic. No more than two (2) side roads closed at any time.

3. Traffic control on the project shall be in accordance with MUTCD, current edition.

4. Unless otherwise directed, the contractor shall take appropriate measurements of the existing pavement marking prior to removing or obliterating them to insure their replacements are positioned in similar locations.

5. If Mainline is open to traffic, no lane closures will be allowed during the following events:

TRAFFIC CONTROL PLAN

<table>
<thead>
<tr>
<th>STAGE 1</th>
<th>TRAFFIC CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A minimum of one traffic lane shall be maintained on Mainline during daytime hours. During night time hours lane closures will not be allowed.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Depth Patching</td>
</tr>
<tr>
<td>Pavement Milling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAGE 2</th>
<th>PHASE 2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAFFIC CONTROL</td>
<td></td>
</tr>
<tr>
<td>Through traffic on Mainline shall be detoured (refer to Detour #1 map on sheet A.1).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation for PCC Widening and Subbase Placement</td>
</tr>
<tr>
<td>PCC Inlay Pavement / PCC Reconstruction Areas / PCC Overlay Pavement</td>
</tr>
<tr>
<td>Right turn lane construction</td>
</tr>
<tr>
<td>PCC / HMA tie-in work at side roads</td>
</tr>
<tr>
<td>Paved Shoulders</td>
</tr>
<tr>
<td>Guardrail updates</td>
</tr>
<tr>
<td>Pavement Markings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAFFIC CONTROL</td>
</tr>
<tr>
<td>Through traffic on Mainline shall be detoured</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation for PCC Widening and Subbase Placement</td>
</tr>
<tr>
<td>PCC Overlay and Widening / PCC Reconstruction Areas</td>
</tr>
<tr>
<td>Right turn lane construction</td>
</tr>
<tr>
<td>PCC / HMA tie-in work at side roads</td>
</tr>
<tr>
<td>Granular Shoulders</td>
</tr>
<tr>
<td>Paved Shoulders</td>
</tr>
<tr>
<td>Guardrail updates</td>
</tr>
<tr>
<td>Pavement Markings</td>
</tr>
</tbody>
</table>

COORDINATED OPERATIONS

Other work in progress during the same period of time will include the construction of the projects listed. Coordinate operations with those of other contractors working within the same area.

This sheet is required to list specific staging notes and criteria that the contractor will need to follow during construction. If specific staging or phasing is required, it is recommended to list specific staging criteria instead of drawing detailed staging plans. This gives the contractor flexibility in setting up staging operations and possibly making construction operations more efficient. It is critical that the contractor submits traffic control and staging plans for review prior to construction.
STAGING CONSTRUCTION OPEN TO TRAFFIC

COMPLETED OVERLAY (Two-Lane Roadway with Paved Shoulders, Conventional Paver)

STAGE 1. Repair surface, prepare for overlay, and construct base shoulder widening and separation layer

- Install traffic control and close the left lane. Follow jurisdictional requirements for traffic control. Check with jurisdiction regarding allowable lane closure length. If surface repair and preparation for the overlay are minimal, then slow-moving traffic control may be appropriate. Closing the lane may require additional traffic control (e.g., signals, flaggers, and/or pilot cars).
- Repair the surface as appropriate. Prepare the surface for the overlay (or, in the case of concrete overlay on concrete, the separation layer) as described in the contract document.
- Prepare for shoulder widening by trenching the existing shoulder and trimming to the specified width. The trench should be filled and compacted as necessary to obtain a firm and stable platform as specified in the contract documents. A continuous progression approach with the shoulder trencher and placement of the base shoulder widening material is encouraged.
- Construct separation layer (only for unbonded overlay on concrete) and placement of the base shoulder widening materials is encouraged.

STAGE 2. Construct right shoulder and concrete overlay

- Shift the traffic control to the left lane and close the right lane to traffic. The length of the closure will depend on the jurisdiction’s maximum closure length with pilot cars. Traffic controls and traffic control signals will be based on jurisdictional requirements.
- Repair and prepare the surface for the overlay or the separation layer and subsequent overlay as described in the contract documents. Construct separation layer (for unbonded overlays).
- Normal space for the paver string line is 1-1.50 ft (0.30-0.46 m) and the paver track is a minimum of 2.50-3 ft (0.76-0.91 m). 1 ft (0.3 m) incremental encroachment reduction (up to 2 ft (0.6 m) total) is common through typical machine adjustment. Speeds should be additionally restricted adjacent to paver when clearance between the paver and vehicle traffic is tight.
- Construct concrete overlay on the existing pavement. Complete right PCC shoulder widening with the overlay. Buff float work shall operate from the outside shoulder only.
- The “A” dimension between the roadway centerline and vertical panel is for the paving machine track and stringline.

STAGE 3. Construct left lane concrete overlay

- Close the opposite lane to traffic and place the concrete overlay according to contract documents, using the same procedures as described in stage 2. Note that stringline may not be necessary for the right edge of the paving when the paved overlay constructed in stage 2 is used as the paver control in this stage. If the right stringline is not used, the “A” dimension could possibly be reduced to 2 ft (0.6 m).
- If the outside edge dropoffs at the shoulder exceeds the jurisdictional allowance for a 1-1 ft, then construct the granular shoulders in this stage.
- Complete shoulderline, install (mill) rumble strips in the paved shoulders and complete pavement marking and regulatory signing in accordance with contract documents.

The sheet provides guidance for staging work when the roadway is open to traffic during construction. This staging diagram, as well as others, are found in Chapter 6 of the Guide to Concrete Overlays (Third Edition), May 2014.

OPTIONAL STAGING CONSTRUCTION OPEN TO TRAFFIC
NOTES:
1. For the Rt. Turn Lane pavement quantities and additional information, refer to detail on sheet B.7.
2. For jointing details, refer to sheet L.2.

Proposed Offset Rt. Turn Lane

- Prop. PCC Pavement
- Prop. HMA Paved Shoulder or Fillet

A - Match existing slope

This sheet shows geometric and staking details for paving at intersections. It is recommended to include this layout information for turn lanes and intersections when the layout varies from the typical cross section.
JOINTING DETAILS
at Sta. 1105+63

- Prop. PCC Pavement

NOTES:
1. Full Depth Rt. Turn Lane and Intersection Paving:
 Transverse joints are "CD" joints with 12" spacing.
2. PCC Overlay Pavement Jointing:
 Refer to sheets B.3 - B.4.

This sheet provides a diagram of joint types and locations at intersections or turn lanes when the joint type differs from the typical cross section.