Evaluation of Test Methods for Permeability (Transport) and Development of Performance Guidelines for Durability

Tommy Nantung (INDOT), Jason Weiss (Purdue), Karthik Obla (NRMCA)

National Concrete Consortium, Baton Rouge, April 8, 2008
Motivation for the Study

- Concrete specified and placed - prescriptive specifications
- Shift from prescriptive specifications to end result or performance based specifications.
- PRS
 - Slowed by a lack of testing procedures, especially relate to transport
Motivation for the Study

- Prescriptive specification
 - $w/cm = 0.40$
 - Cover (1.5 to 2.5 in.), chloride ion limits
 - 20% fly ash, 30% slag etc.
 - 705 lb/yd3
 - Corrosion inhibitor

- Replace prescription with performance requirement for corrosion resistance
Each potential durability issue can be related in part to water penetration
- Freeze-thaw, chloride penetration and corrosion, alkali aggregate attack, and sulfate attack.

To specify more durable concrete, tests are needed:
- Qualify the resistance of the concrete to water (or aggressive fluid) penetration.
Project Objectives

- Develop test procedure(s)
 - Directly evaluates the transport properties of concrete and relates these to anticipated performance with the use of exposure conditions
- Evaluate existing transport test procedures
- Develop new, or improve test procedures
- Correlate transport properties and existing ‘durability’ tests.
- Develop guidelines to relate
 - Permeability, exposure conditions, and field performance for use in specifications and quality control
Project Scope

- **Phase I**
 - Literature Review of Concrete Permeability (Transport) Test Procedures and Models that Link Tests with Performance

- **Phase II**
 - Evaluate Promising Concrete Permeability (Transport) Tests and Recommend Procedures for Further Use

- **Phase III**
 - Develop New or Improve Existing Permeability (Transport) Testing Procedures.
 - Develop Protocols to Use these Tests, Evaluate the Precision and Bias of these Tests
Project Scope

- Phase IV
 - Correlate Permeability (Transport) Tests with Laboratory Tests that Evaluate Durability

- Phase V
 - Develop Performance Criteria Guidelines that Relate Permeability (Transport) Tests with Exposure Conditions and Performance

- Phase VI
 - Preparation of Technology Transfer and Educational Materials
Example of Proposed Performance Tests

- **Rapid Index Tests**
 - RCP (ASTM C 1202)
 - RMT (AASHTO TP 64)
 - Sorptivity (ASTM C 1585)
 - Gas Permeability (RILEM-CEMBUREAU)

- **Science-based Tests**
 - Chloride Diffusion (ASTM C 1556)
 - Modified Chloride Diffusion (ASTM C 1556)
For the main characteristics investigated in this work the following approach was used for modeling:

Step 1: Assess Materials Using Standard AASHTO or ASTM tests

Step 2: Transform Test Results into Material Properties

Step 3: Relate Material Properties to Service Life Using Exposure

Step 4: Use Service Life to Establish Performance Grades

- Chloride Permeability and Corrosion
- Freeze Thaw Durability

Barde et al. 2006
Corrosion Model Approach

Step 1: Assess Materials Using Standard AASHTO or ASTM tests

Step 2: Transform Test Results into Material Properties

Step 3: Relate Material Properties to Service Life Using Exposure

Step 4: Use Service Life to Establish Performance Grades

Step 1: Measurement using RCPT

Transform RCPT results to Diffusivity
(D) (m^2/sec)

Step 3: Relate Diffusivity to Life

D (m^2/sec) to Years

Step 4: Service life (t_{life}) to Material Grades

Barde et al. 2006
Performance Grades – Example

Barde et al. 2006
Recent Development

- ASTM C1202, *Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration*
- ASTM C1556, *Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Materials by Bulk Diffusion*

Challenge

- Can the RCPT results (< 90 days) rank mixtures in the same order as the chloride diffusion test?
Recent Development

- **Scenario 1**
 - Low pore solution conductivity
 - Open pore structure
 - Low RCPT result and high chloride diffusion coefficient

- **Scenario 2**
 - Very high pore solution conductivity
 - Tight pore structure
 - High RCPT result and low chloride diffusion coefficient
Recent Development

- Hypothesis
 - Accept mixtures with high chloride ion diffusion coefficients and low pore solution conductivities
 - Reject mixtures with low chloride ion diffusion and high pore solution conductivities
- The conductivity of the pore solution has no influence on chloride ion transport measured with ASTM C 1556
- Specifying concrete mixtures with low RCPT values are not a sound approach
Preliminary Results

<table>
<thead>
<tr>
<th>SL50/0.40</th>
<th>SL23/0.40</th>
<th>SF12/0.63</th>
<th>SF10/0.40</th>
<th>SF12/0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, days</td>
<td>28</td>
<td>46</td>
<td>64</td>
<td>81</td>
</tr>
<tr>
<td>Charge passed, coulombs</td>
<td>2000</td>
<td>1800</td>
<td>1600</td>
<td>1400</td>
</tr>
</tbody>
</table>

ACC. SL50/0.40
ACC. SL23/0.40
ACC. SF12/0.63
ACC. SF10/0.40
ACC. SF12/0.60
Preliminary Results

![Graph showing Cl concentration vs depth](image-url)
Preliminary Results

Diffusion Coefficient (Deff) @ 113 d vs Rcpt @ 56 d

- SL50/0.40
- SL23/0.40
- SF12/0.63
- SF10/0.40
- SF12/0.60
- R2 = 0.99

Graph showing the relationship between Rcpt (coulombs) on the x-axis and Deff (m²/s) on the y-axis. The data points are marked with different colors and labels.
Preliminary Results

Diffusion Coefficient (D_{eff}) @ 113 d vs Rcpt @ 99 d

- SL50/0.40
- SL23/0.40
- SF12/0.63
- SF12/0.60
- R2 = 0.99

Rcpt, coulombs

Deff, m2/s
Preliminary Conclusions

- Mixture with “very low” (975 Coulombs) chloride ion penetrability (ASTM C 1202) has a high chloride ion diffusion coefficient (SF12/0.63)
- Mixtures with “higher” chloride ion penetrability (ASTM C 1202) has a lower chloride diffusion (SL23/0.40 vs SF12/0.60)
- The RCPT does not rank mixtures in the same order as the chloride ion diffusion.
Preliminary Result from Purdue

- Measurement of Water Absorption Using a Semi-Automated Procedure
- Significance of Sample Orientation
- Detailed Analysis of Water Penetration Depth at Early Ages
Sorption Measurements

Specimen #1: w/c = 0.4, 12 months of conditioning
Specimen #2: w/c = 0.4, 3 months of conditioning
Specimen #3: w/c = 0.5, 3 months of conditioning

Water Absorption (g) vs. Time (Hr)

Average, Proposed procedure
Average, Standard procedure
Sorptions Measured in Cracked Concrete

- **Sealing** – Side epoxy sealed, tape bonded and sealed
- **Preconditioning**: 14 days @ 20°C, 50% RH
- **Mass gain** - recorded regularly
Several Different Sorption tests were evaluated to relate this property to exposure conditions.

- (a) Ponding Test
- (b) Capillary Rise
- (c) Submerged Test
- Absorption in damaged samples
- Rate of absorption can change significantly
- Total absorption is very similar
Typical Absorption Measurements

Change in normalized intensity with ingress
Depth of Penetration

Sant et al. 2008
Summary

- Work is currently assessing fluid transport in concrete
- Work shown today describes water sorption techniques that show promise
- Additional Work (Not Shown) is investigating diffusion and permeability
INDOT
- Tommy E. Nantung, Ph.D., P.E., Section Manager

Purdue University
- Jason Weiss, Ph.D., Professor and Associate Head
- Jan Olek, Ph.D., P.E., Professor
- Mark Baker is the Laboratory Manager
- Post Doctoral Assistants, Graduate Assistants and Hourly Labor

NRMCA
- Karthik Obla, Ph.D., P.E. Senior Director of Research and Materials Engineering,
- Haejin Kim, Laboratory Manager/Materials Engineer
- Soliman Ben Barka, Senior Laboratory Technician
- Colin Lobo, Ph.D., P.E. Vice President of Engineering
- Gary Mullings Senior Director of Operations and Compliance.
Project Funding

- Funding
 - $883,000 Pooled Fund
 - 4 year Project
 - $25,000 each year for the first three years and $12,000 for the fourth year.
 - $100,000 FHWA
 - $335,100 Matching Dollars from Industry
 - $135,515 In Kind Matching