Use of Fibers in Concrete Overlays at MnROAD

NCC Fall Meeting
September 23rd, 2013

Tom Burnham, P.E.
Minnesota Department of Transportation

Office of Materials and Road Research
Why Use Fibers in Thin Concrete Overlays?

- Increased toughness
 - Hold fatigue cracks together
 - Reduce maintenance frequency

- Improved joint load transfer capacity (?)
 - Serve as “dowel bars” in very thin slabs (?)
MnROAD 2013 Construction (June)

- Cells 160-163: Fiber-reinforced bonded concrete overlay of asphalt (whitetopping)
 - 4” FRC over 7” existing HMA (milled)
 - 5” FRC over 6” existing HMA (milled)
 - Sealed vs unsealed joints

- Cells 140, 240: Ultra-thin FRC unbonded concrete overlay of concrete
 - 3” FRC over 7” existing PCC
 - Fabric interlayer (2 thicknesses)
FRC Specifications

Cells 140/240 and 160-163 Pavement Mix Design shall comply with the following:

Provide a mix design meeting the following requirements:

(1) Grade A paving concrete placed at a water/cement ratio not greater than 0.42.

(2) Provide a fine aggregate gradation complying with Table 3126-3.

(3) Provide a CA-50 coarse aggregate gradation complying with the requirements of Table 3137-4 for Cell 40.

(4) Provide a CA-35 coarse aggregate gradation complying with the requirements of Table 3137-4 for Cells 60-63.

(5) Provide fiber-reinforced concrete utilizing structural macro fibers which require approval by the Engineer in conjunction with the Concrete Engineer prior to use. A minimum concrete residual strength of 120 psi according to ASTM C1609 is required.
Fiber Reinforced Concrete

Performance-based specification (120 psi residual strength)

ASTM C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)
Fiber Reinforced Concrete

Performance-based specification (120 psi residual strength)

ASTM C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)

Element Materials Technology, June 5, 2013
Fiber Reinforced Concrete

Performance-based specification (120 psi residual strength)

ASTM C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)

6.5 lbs/yd³ Propex structural fibers

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>(f_{150}) (psi)</th>
<th>Mix 1F (Cell 160-163)</th>
<th>Mix 2F (Cells 140/240)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>145</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>130</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>175</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>145</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1E</td>
<td>140</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

Element Materials Technology, June 5, 2013
MnROAD Cells 160-163

Fiber Reinforced Concrete Overlay of Asphalt (Whitetopping)

5” FRC
6’x6’, 6.5 lbs/yd³ Propex
Sealed/unseal jts

6” HMA

Silty/Clay

4” FRC
6’x6’, 6.5 lbs/yd³ Propex
Sealed/unseal jts

7” HMA

Silty/Clay
MnROAD Cells 140 & 240

Ultra-thin Fiber Reinforced Concrete Overlay of Existing Concrete Pavement

- 3” FRC
 - 6’x6’ panels, 6.5 lb/yd³ Propex
- Fabric interlayer (std and thin)
- Var thickness PCC
 - 5.5-7” design (1993)
- 5” Class 5 Sp (1993)
- Silty/Clay
MnROAD Cells 140 & 240

Nonwoven Geotextile Fabric Interlayer (white)

Used glue to secure standard/thin fabric to existing concrete

Fabric manufactured by Propex
MnROAD Cells 140 & 240
MnROAD Cells 140 & 240

Fiber Optic Sensors

Partnership with Missouri University of Science and Technology and NDSU
Questions??????