SmallWood 2008 and Beyond
Wisconsin Mobile HewSaw Story
The forest products industry plays a vital role by providing an economic engine for forest dependent communities and an economical outlet for wood and biomass removals from forestry operations.
Mill Closures & Layoffs, 1989 - 2003

Status of U.S. Forest Products Industry

Pulp, Paper & Paperboard Mills
Employees Laid Off
Why this Project?

Driving Issues

• US Forest Service—managing forest fuels buildup in the Western U.S. through utilization

• Wisconsin DNR—excess supply of 250,000 cords of pulpwood and loss of 40,000 Wisconsin forest products jobs since 2006

• Vaagen Bros.—need to find ways to utilize smaller quantities of small-logs economically
Vaagen Bros. Interest in Mobile Sawmilling

• Investigating alternatives to high capital cost of small-log sawmills

• Why?—scattered log resource often does not justify the necessary capital investment for an optimized small-log sawmill

• Can we reduce the capital investment—without significantly increasing per unit operating costs or giving up too much lumber recovery?
• Vaagen Bros. purchased mobile HewSaw from an operation in New Zealand
• Demonstrate potential for processing small diameter from a more scattered small-log resource and from forest fuels projects
• Vaagen Bros. worked with Terry Mace, WisDNR on locating the demonstration site
Vaagen Bros. Interest in Mobile Sawmilling

• Vaagen Bros. partnered with Ralph Hamel Forest Products in Vesper, WI—managed the day-to-day operations and provided marketing

• Plum Creek Timber Company—contracted to supply 6,500 green tons of first and second thinning red pine plantation pulpwood

• Domtar bought the pulp chips—other mill residues went to several other local markets
Mobile HewSaw Demonstration

Vaagen Bros. Lumber, Inc.
Hamel Forest Products
HewSaw Machines, Inc.
Plum Creek Timber Co.
Forest Products Lab
Wisconsin DNR
Alliant Energy
Domtar

LD Jellison, Inc.
Glacierland RC&D Council
Univ. of Wisconsin-Extension
Mobile HewSaw Mill arrives in Wisconsin
Setting Up the Mill
Connecting to the Grid
Alliant Energy
Bark Residue Handling
Residues
Pulp Chips
Hog Fuel
Sawdust
Bark
Sawdust and Fines
Wisconsin’s Red Pine Plantation Resource
Pulpwood alternatives—can we produce softwood lumber from Wisconsin’s red pine resource?
Red pine logs purchased by weight basis from Plum Creek Timber Co.
Unsorted Red Pine 12-Foot Bolts
Sorting Logs
Log Manufacturing Issues
Mobile HewSaw Mill 6,500 Ton Test
Loading sorted red pine logs with a Polar Pre-hauler
Sawyers Control Booth
Tuning Up the Mill
Saw Arbors with Spacers and Profile Head
Products Produced

1x4
1x6
2x4
2x6
4x4 (cants)
6x8 (ties)
7x9 (ties)
Ralph asks “So what in the blazes are you government boys up to now?”
Lumber Recovery

Mill Study Objectives

- Establish the mill’s baseline lumber recovery
- Compare sorted vs. unsorted log batches
- Investigate the relationship of log diameter and lumber recovery
- How does it compare to computer simulated optimized scan and set recovery—FPL’s Best Opening Face (BOF) program
Lumber Recovery
Mill Study #1 – Unsorted 8 ft.

• First thinning red pine plantation material
• Diameter—5 and 6 in.
• Sawing pattern: 2 - 2x4s
• 345 unsorted study logs
• Color coded logs—on spec, below spec and above spec
Lumber Recovery

Mill Study #1 – Unsorted 8 ft. Red Pine

Target Log Diameter Specification (4.5 to 6.5 in.)
If the logs are too small?
A Few Observations

• Choosing the wrong sawing pattern or miscalculating log weight to volume relationships can be problematic

• Sorting and processing logs in batches by optimal sawing pattern can result in reasonably good lumber recovery

• Details, details, details…
Lumber Recovery

Mill Study #2 – Sorted 12 ft. Red Pine

• Second thinning red pine plantation material
• Diameter range—5.5 to 8.4 in.
• Sawing pattern by 1 in. classes
• 310 study logs
• Color coded, sorted and run as separate batches
Lumber Recovery
Mill Study #2

Mill Study #2 Board Foot Tally

<table>
<thead>
<tr>
<th>Products by Log Diameter</th>
<th>Study</th>
<th>BOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x4</td>
<td>1500</td>
<td>1000</td>
</tr>
<tr>
<td>2x4</td>
<td>1500</td>
<td>1000</td>
</tr>
<tr>
<td>2x6</td>
<td>1500</td>
<td>1000</td>
</tr>
<tr>
<td>2x8</td>
<td>1500</td>
<td>1000</td>
</tr>
<tr>
<td>6 in.</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>7 in.</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>8 in.</td>
<td>2000</td>
<td>2000</td>
</tr>
</tbody>
</table>

Study: Orange
BOF: Green
Estimated Small-Log Lumber Recovery

- 50% Lumber
- 10% Sawdust
- 30% Chips
- 10% Bark

Length = 12 ft.
Diameter = 7 in. (6.5 to 7.5)
Overrun = 42 %
LRF = 7.00 (bd.ft. lumber per cu.ft. log)
Lumber Recovery
Mill Study #2

Lumber Recovery Factor - Sorted 12 ft. Logs

Small End Diameter

- 6 in.
- 7 in.
- 8 in.

Lumber Recovery Factor

Actual Lbr. Tally
BOF Simulation
Mill Study #2 – Sorted 12 ft. Logs

Sawing Pattern for 6-in. Diameter

Study

2x4—1x4—2x4

LRF = 6.34

BOF

1x4—2x4—1x4
2x4—2x4—2x4
2x4—2x6—2x4

LRF = 7.96
Mill Study #2 – Sorted 12 ft. Logs

Sawing Pattern for 7-in. Diameter

Study

2 x 4
2 x 6
2 x 4

LRF = 6.85

BOF

2 x 4—2 x 6—2 x 4
2 x 6—2 x 6

LRF = 7.00
Mill Study #2 – Sorted 12 ft. Logs

Sawing Pattern for 8-in. Diameter

Study

2 x 6 — 2 x 6 — 2 x 6

LRF = 6.68

BOF

2 x 6 — 2 x 6 — 2 x 6
2 x 4 — 2 x 6 — 2 x 6 — 2 x 4
2 x 6 — 2 x 8 — 2 x 6
2 x 4 — 2 x 8 — 2 x 8 — 2 x 4

LRF = 8.01
What about lumber grade yield?
Recommendations Based on Mill Study Results

- Control per unit cost ($/MBF) and improve mill efficiency (lumber recovery)
- Sort and process logs in batches by optimal sawing pattern—reasonably good recovery at lower capital cost
- Log scanning & computer optimized sawing technology—better lumber recovery at lower operating cost
Mobile HewSaw Mill Demonstration

Project Impact

• Better understanding of processing small-log red pine & the Mobile HewSaw’s capabilities

• Proof of concept—several potential applications

• Demonstration introduced technology to Wisconsin & stimulated a hardwood sawmill expansion project—investment, jobs
Seven Critical Factors

Forest Products Economic Development

1. Raw material resource
2. Product options
3. Markets & marketing
4. Processing technology
5. Financial
6. Environmental, health & safety
7. Management “know how”

From “Harmony of a Project” Gene Davis, International Resources Unlimited
“Rock Fournier is now going to give you a run down on a followup HewSaw project in Wisconsin. Happy trails to you until we meet again!”
—Roy Rogers