Use of Red Pine for Stress-Laminated Glulam Bridges in Wisconsin

James P. Wacker
Forest Products Laboratory
U.S. Forest Service
Madison, Wisconsin

SmallWood 2010 Conference, Hot Springs, AR, April 20-22, 2010
National Wood In Transportation

• Established 1988 by Congress and administered by the U.S. Forest Service

• Program Components:
 – Demonstration Timber Bridges
 – Research
 – Technology Transfer & Information Management
 – Rural Revitalization

• Main Emphasis Areas
 – Underutilized, locally-available wood species
 – Innovative material and bridge designs
What is a Stress-Laminated Bridge?

- Slab-type bridge deck
- Sawn lumber, glulam, or structural composite lumber (SCL)
- No mechanical fasteners or glue between adjacent lams
- High-strength steel bars
- Butt joints permitted
- Improved wheel load distribution
- Innovative superstructure design
Wisconsin Lumber Species

- *Pinus resinosa*
- Strength properties
- CCC plantations
- Good treatability
Red Pine as a Bridge Material

• Technical Obstacles
 – Design values for WI red pine lumber
 – Lumber sizes limited availability
 – Not recognized by AITC for glulam manufacturing
 – Not recognized by AWPA for pressure-treatment

• Development of glulam beam layups
Advantages of Glulam for Bridges

• Utilization of small-diameter materials
• Longer span capabilities
• Deeper member sections
• Low quality material in low stress zones
• Conserve high quality material
• Dry moisture content at installation
Teal River Bridge - Description

- Double-lane bridge
 - Simple span
 - 32.5 ft long
 - 24 ft wide
 - HS20 loading
 - Penta treatment
 - 1” dia. steel bars @ 44in.
 - No butt joints
 - Red Oak glulam at edge lams
Teal River Bridge – Beam Layup

13-3/4 in.

3-1/8 in.

No.2 Dense
No.2 Dense
No.2
No.2
No.2
No.2
No.2
No.2 Dense
No.1 Dense

Southern Pine
Southern Pine

Combination of Pine Species
Visual Grading Techniques

Beam Design
$F_b = 2,000 \text{ lb/in.}^2$
$E = 1,600,000 \text{ lb/in.}^2$
Development of Red Pine Glulam

- E-rating of individual lams (by grade) at plant
 - dynaMOE and E-computer
- Stiffness testing of fabricated beams
 - dynaMOE and static beam deflection
Development of Red Pine Glulam

- Verifying beam design at the Teal River site
Teal River Bridge – Construction
Teal River Bridge – Construction
Teal River Bridge – Field Monitoring

• 2-year period after construction
 – Moisture content
 – Stressing bar force
 – Static load testing
 – General condition
Teal River - Moisture Content Trend
Teal River – Bar Force Trend

![Graph showing Teal River Bar Force Trend]

- 100% Design Level
- 40% Design Level
Teal River – Current Condition

- After 20 yrs of service
Pine River Bridge

• Double-lane bridge
 – 3-span continuous
 – 90 ft long
 – 38 ft wide
 – HS20 loading
 – Penta treatment
 – 1” dia. steel bars @ 40 in.
 – No butt joints
 – Red Oak glulam at edge lams
Pine River Bridge – Beam Layup

Beam Design
\[E = 1,600,000 \text{ lb/in.}^2 \]

Visual & Mechanical Grading Techniques

All Red Pine

Mechanically Graded

Visually Graded

13-1/2 in.

3 – 9 in. width

1.8 E

1.6 E

1.4 E

1.4 E

1.4 E

1.4 E

1.4 E

1.6 E

1.8 E
Lumber Stiffness – Flatwise Vibration

2 x 8 in. Nominal Red Pine

<table>
<thead>
<tr>
<th>Lamination Grade</th>
<th>No. Tested</th>
<th>Average</th>
<th>Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 MOE bottom</td>
<td>49</td>
<td>1.66</td>
<td>16.7%</td>
</tr>
<tr>
<td>1.8 MOE top^b</td>
<td>30</td>
<td>1.84</td>
<td>12.1%</td>
</tr>
<tr>
<td>1.6 MOE</td>
<td>24</td>
<td>1.35</td>
<td>13.9%</td>
</tr>
<tr>
<td>No. 2</td>
<td>7</td>
<td>1.10</td>
<td>----</td>
</tr>
</tbody>
</table>

Modulus of Elasticity, MOE (x 10^6 lb/in²)
Beam Stiffness – Static Deflection

13-1/2 in. deep Glulam Beams

<table>
<thead>
<tr>
<th>Beam No.</th>
<th>MOE (x10^6 lb/in²)</th>
<th>Beam No.</th>
<th>MOE (x10^6 lb/in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>1.35</td>
<td>2</td>
<td>1.10</td>
</tr>
<tr>
<td>13</td>
<td>1.43</td>
<td>7</td>
<td>1.15</td>
</tr>
<tr>
<td>30</td>
<td>1.47</td>
<td>3</td>
<td>1.18</td>
</tr>
<tr>
<td>23</td>
<td>1.49</td>
<td>9</td>
<td>1.21</td>
</tr>
<tr>
<td>21</td>
<td>1.51</td>
<td>6</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>1.52</td>
<td>5</td>
<td>1.28</td>
</tr>
<tr>
<td>22</td>
<td>1.53</td>
<td>1</td>
<td>1.31</td>
</tr>
<tr>
<td>7</td>
<td>1.54</td>
<td>4</td>
<td>1.35</td>
</tr>
<tr>
<td>Average</td>
<td>1.48</td>
<td>Average</td>
<td>1.23</td>
</tr>
<tr>
<td>C.O.V.</td>
<td>4.3%</td>
<td>C.O.V.</td>
<td>6.9%</td>
</tr>
</tbody>
</table>
Pine River Bridge – Construction
Pine River Bridge – Construction
Pine River Bridge

- Field Monitoring Study
 - 5 year monitoring
 - Moisture content
 - Stressing bar force
 - Deck temperatures
 - Static load testing
 - Overall condition

- Datalogger utilized
Pine River – Moisture Trend
Pine River – Bar Force Trend
Pine River – Static Load Test
Pine River – Current Condition

- After 18 yrs of service
Red Pine Bridges (MI L. Peninsula)
Summary

• The former National Wood In Transportation Program facilitated the development of Red pine as a structural material.

• These two bridges were key in demonstrating the feasibility and potential for utilizing red pine for highway bridge applications.

• Additional glulam bridges have since utilized Red pine lumber and other small diameter species.

• Current condition of bridges is satisfactory after 20 years.
Acknowledgements

• Financial Support and Guidance
 – National Wood In Transportation Program
 – Federal Highway Administration
 – North Twenty RC&D

• Glulam Development → Russ Moody (FPL retired)

• Design Assistance → Westbrook Engineers, Chequamegon NF

• Field Data Acquisition → FPL Engineering Mechanics Laboratory

• Field Monitoring → Lola Hislop, Paula Hilbrich Lee, James Kainz

• Bridge Owners → Richland Center, Sawyer County

• Glulam Supplier → Sentinel Structures, Peshtigo, WI
Questions?