
Office of Infrastructure

MICHA EL F.  PRA UL,  PE
SENIOR CONCRETE ENG INEER

FHWA ,  OFFICE OF INFRA STRUCTURE

FHWA Program Update
National Concrete Consortium, Spring 2019

April 2  Denver, CO

Images FHWA unless otherwise noted.



 Past experience with 
FHWA

 Lead role in FHWA 
asphalt activities

 Mobile Asphalt Testing 
Trailer Program manager

 Remote employee 
(Philadelphia area)

Welcome Dr. Leslie McCarthy
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Technology and Innovation Deployment Program

 FAST Act provides $67,500,000 each year to carry 
out a Technology and Innovation Deployment 
Program (TIDP) relating to all aspects of highway 
transportation.

 FAST Act reserves $12,000,000 each year from the 
TIDP program to accelerate the implementation and 
deployment of pavement technology (AIDPT).

 AIDPT instructs FHWA to promote, implement, 
deploy, demonstrate, showcase, support, and 
document the application of innovative pavement 
technologies, practices, performance, and benefits.
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AIDPT Cooperative Agreements 

 FHWA has awarded multiple Cooperative 
Agreements under the AIDPT program between 
2013-2017.

 Advantages of cooperative agreement vehicle:
 Technical guidance and assistance 
 Ability to leverage Federal investments with private funding and partnerships
 Collaboration increases public buy-in of deliverables

 Awards made to universities, transportation centers, 
others (ex. Asphalt Institute, National Asphalt 
Pavement Association, National Concrete Pavement 
Technology Center, American Concrete Institute, 
etc.).
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Substantial Federal Oversight

 Prior to/at Award
 Technical panel evaluates applications and selects recipient
 Subawardee/subcontractor review and approval
 Key personnel review and approval

 During Agreement Performance
 Technical assistance and guidance
 Review and approval of initial work plan (including 

outreach and dissemination plan)
 Technical, performance, and financial monitoring
 Review and acceptance of agreement deliverables
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Concrete Cooperative Agreement Topic Areas

 Extending Pavement Life and Performance
 Reducing Initial and Life Cycle Costs
 Accelerated Construction Techniques
 Design Criteria and Specifications (PEM)
 Non-Destructive Testing
 Technology Transfer

Please share ideas with Mike Praul and/or Peter 
Taylor
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Anticipated Deliverables

 Best Practices 
Guides

 Demonstration 
Projects

 Specification 
Language

 Literature Reviews
 Marketing New 

Technology

 QC Tools 
 State-of-the-

Practice Reports
 Technical Briefs
 Webinars
 Workshops
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 Available to pooled fund participating states
 Eight states currently participating (NY, PA, IA, WI, 

MN, NC, IL, SD)
 Deadline for new applications:  5/31/19
 Reports coming from participating states will be 

shared with PEM Pooled Fund and available to all
 Federal Lands projects coming!

PEM Implementation Incentive Funds
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2019 MCT State Site Visits
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 South Carolina
 North Carolina
 Kansas

 California
 Florida
 Vermont



2016 2017

 PA Concrete Conference
 International Society for 

Concrete Pavements (TX)
 Arkansas American 

Concrete Pavement 
Association (ACPA) 
Conference

 NE Concrete Conference
 VA Concrete Conference
 National Society of 

Professional Engineers 
(TX)

 OH Transportation 
Engineering Conference

 AZ Equipment Expo
 AZ Pavements & 

Materials Conference
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MCT at Conferences



2018 2019

 MD Concrete Conference
 NY Construction Materials 

Association Conference
 TX Concrete Conference
 IN American Society of 

Civil Engineers Annual 
Meeting

 Roadway Management 
Conference (PA)

 ConcreteWorks Conference 
(MA)

 PA Concrete Conference
 National Road Research 

Alliance (MN)*
 UT Concrete Conference*
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MCT at Conferences



National Concrete Consortium
Spring 2019

Ahmad A. Ardani, P.E.
Infrastructure Materials Team, Turner-Fairbank 

Highway Research Center, FHWA

TFHRC Concrete Research Update
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Current 
focus for 
PEM

Fundamental 
research tool to 
validate/refine 
models
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Stage 1: Impact of Conditioning Regimes on Transport Properties 
TFHRC/NRMCA Collaboration (2-Phased study) 

Objectives: 
 How FF is affected in different curing regimes
 Understand how DOS, DOH & PS resistivity varies in different curing regimes

 Prediction of PS resistivity using NIST model Vs. measured PS

 Bucket test, reasonable indication of PS resistivity!
 Eliminates the need for PS expression, streamlining FF

Experimental design:
 4 mixtures & 7 different curing regimes
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EFFECT OF DIFFERENT CURING CONDITIONS ON
TRANSPORT PROPERTIES

 Phase I Status:
 Enormous amount of  data acquired analyzed in phase I:

BR, SR, PSR, FF, RCPT, DOH, DOS, Leaching, NIST Model 

 Testing on phase I mixes is complete 

 Data analysis is about to be finalized 

 Draft Phase I report on FF & bucket test under internal review
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Values of DOS, FF, Concrete & PS Resistivity depends on the 
curing regime and the mix

Concrete Resistivity

General Findings: A glimpse
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 Values of DOS, FF, Concrete & PS Resistivity depends on the 
curing regime & the mix

General Findings: A glimpse
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Bucket test – assume PS resistivity the same as the resistivity of bucket solution

How reasonable is this assumption?

Reasonable for 2 of the mixes!
𝐹𝐹 =

𝜌𝜌𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝜌𝜌𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

Assuming 
ρpore solution = ρbucket 

General Findings: A glimpse
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Stage 2: F-T Durability, Salt Damage Related Tests

 Quantify CAOXY using LTDSC  
 Workplan developed

 Modified ASTM C642
 Total pore volume, DOS  

 Modified C1585: Rate of absorption

 Time to critical degree of saturation:    𝑫𝑫𝑶𝑶𝑺𝑺𝒄𝒄𝒓𝒓𝒊𝒊𝒕𝒕𝒊𝒊𝒄𝒄𝒂𝒂𝒍𝒍 = 85%
𝑺𝑺 𝒕𝒕 = 𝑺𝑺𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 + ∅ � 𝑺𝑺𝟐𝟐 � 𝒕𝒕 ≤ 𝑫𝑫𝑫𝑫𝑫𝑫𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

Upcoming Reports:
- Pore Solution Expression
- Influence of  Curing Regimes on FF
- Flyer on FF and Bucket Test

Chlorides: Ca, Mg, Na
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TFHRC/OSU/UT Collaboration
BENCHMARKING MCPT & CCT TO OUTDOOR EXPOSED BLOCKS

 MCPT: Miniature Concrete Prism Test, Clemson U; 8-12 weeks
 CCT: Concrete Cylinder Test, U. of Texas; 9 month

 Problem Statement: Many exposure blocks in Texas & across north 
America exhibiting signs of ASR, despite passing the ASTM C1293 
two-year prism 

MCPTCCT
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TFHRC – OSU – UT Collaboration

 Research Ideas: 
Identify tests that don’t promote leaching

 Objectives:  
Examine CCT & MCPT as accurate/accelerated ASR 

mitigation measures 

Determining duration & expansion limits

How it affects pore solution chemistry!
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OVERALL PLAN
2 reactive coarse aggregates (Spratt, Placitas)
2 reactive fine aggregates (Jobe, Wright)

Mitigation Measures: 

40 mixes total, TFHRC responsible for 15

Results: 
 Encouraging results: MCPT, confirming field data – CCT Mimics C1293 
 Final Report, September 2019 

BENCHMARKING MCPT & CCT TO OUTDOOR EXPOSED BLOCKS

20% F
Ash

40%C
Ash

40%C 
Ash  

5%SF

40% 
Slag

Slag+SF
35/5

Lithium 
4.9g/yd3
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Quantifying Fly Ash Adsorption Using Sorbsensor 
TFHRC/Headwaters Inc. Collaboration

Objective: Quantifying fly ash adsorption capacity by fluorescence properties

Foam Index: Stages of foam formation 

No foam Foam stability in progress Stable foam
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Sorbsensor - How it Works!
 Surrogate surfactant: nonylphenol ethoxylate (P10) 
 10 different ashes, 8 different states

Procedure:
 Fly ash is mixed with a solution containing 150 ppm of P10 
 The remaining P10 fluoresces as existed by UV
 Fluorescence intensity ∝ concentration of P10
 Same 10 fly ashes tested with 3 different AEAs using Foam Index



Adsorption Capacity Measurement: Sorbsensor  Vs. 
Foam Index

 Fluorescence results and

Foam Index correlated well

 Each AEAs exhibited different 
correlation curve

 Game changer: 

 No guesswork!

SBIR project (PhosphorTech): Advance this technology’s capabilities: 
Broader UV spectral range, use with any AEAs (not limited to P10)
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Office of Infrastructure

MA TTHEW CORRIGAN,  PE
CONSTRUCTION RESEA RCH ENG INEER

FHWA ,  OFFICE OF INFRA STRUCTURE R&D

FHWA Performance Related 
Specifications (PRS) Update



 Performance related specifications (PRS) compare 
design expectations to what was constructed, and b 
accordingly. 

 “Predict,” or more correctly “model,” as-constructed 
performance for each constructed lot on a project by 
measuring construction quality characteristics. 

 Provides a rational, technical, and defensible framework 
for awarding a contractor incentives and disincentives 
for construction quality by relating the as-constructed 
modeled performance to the target or as-designed 
performance.

 Contractors have freedom to innovate in order to achieve 
targeted performance.

PRS Elevator Speech
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Office of Infrastructure

Concrete Pavement Performance

Design

ConstructionMaterials

Pavement ME AND
Engineering Experience and
Expertise (Foundation, Design 
Features, factors not provided in 
Pavement ME)

PEMD: Lab Qualification 
for Concrete Mixture 
Design AND Other Lab 
Tests for Other Materials

PRS: Expected Life 
Acceptance for 
Concrete Mixture AND
also includes Non-
Mixture Properties

ALL THREE COMPONENTS ARE IMPORTANT FOR PERFORMANCE



• D-Cracking, Alkali-Aggregate 
Reactivity

Aggregate Stability

• Choose from w/cm ratio, formation 
factor, ionic penetration

Transport Properties

• Choose from air content, SAM 
number, or time critical saturation

Hydrated Cement Paste 
F T Durability 

• Choose from several optionsHydrated Cement Paste 
Durability – Salt Damage

• Choose from several optionsSlab Warping/Cracking 
Due to Shrinkage

• Choose from flexural strength or 
compressive strength

Concrete Strength

• Choose from Box test or V-Kelly testWorkability

• N/ANon Mixture Factors

•N/A

Performance Engineered 
Mixture Design (PEMD)

Lab Mixture Qualification 
Before Construction

Performance Related 
Specifications (PRS)

Determination of Expected 
Pavement Life for Payment

•Choose from resistivity or formation 
factor + matrix porosity

•Choose from air content or SAM 
number

•N/A

•Choose from flexural strength or 
compressive strength

PP84 Parameter

•N/A

•thickness, initial smoothness (IRI), 
dowel alignment …

•Design check only

Performance Tests and 
Performance Model(s)



Assess 
Performance 
w/ Standard

Tests

Considerations:
• Ability to assess 

performance
• Relationship to 

fundamental 
properties

• Ease of use
• Cost

Convert Test 
Results to 

Fundamental 
Properties

Relate 
Properties w/ 

Exposure
Conditions

Establish
Performance

Limits and 
Measure

Examples:
• Measure

Resistivity
• Account for Pore 

Solution
• Determine 

F- Factor

• Set 
Performance 
Limits

• Use Tests to 
Measure

• To Assure that 
You Receive 
what You 
Specified

Use Exposure, 
Material Properties, 
and Models to 
Estimate 
Performance 

Four Step Approach
Towards Durability in PRS
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Identify AQCs and
Target Values

Establish Performance
Criteria

Model
Performance

Design AQC vs.
As-Constructed AQC

Sampling and Testing

Pavement Design

Incorporate into 
Plans and 

Specifications
Performance 
Incentives and 
Disincentives

PASSRigidTM



 Performance Related Specifications (PRS) are the 
implementation of some Performance Engineered 
Mixture Design (PEMD) tests to model expected life; 
and provide incentives/disincentives for performance

 PRS also includes other non-mixture quality 
characteristics such as slab thickness, initial 
smoothness, and dowel alignment to determine 
expected life

 Durability and structural performance is modeled in 
PASSRigidTM

 Agency provides incentives for exceeding performance 
criteria and disincentives for not meeting performance 
criteria based on modeled performance 

PRS Summary
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F Factor Inputs Status

Name

Key 
Variable 

Bulk Resistivity Pore Solution 
Resistivity

Temperature 
Correction

Surface 
Resistivity

ρ Bulk ρ Soln EAC ρ Surface

Status

Complete: 
Conditioning 
improved and 
includes the 
‘bucket test’

Complete:
There are several 
ways to obtain 
and it is simple to 
measure after 
obtaining solution

Complete:
This is needed and 
exists for a clear 
way to perform 
temp. corrections

• Identical to bulk 
when done 
correctly

• Requires a task 
force to revise*
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Freeze Thaw Model Inputs Status
35

Name

Key 
Variable 

Matrix Saturation Critical 
Saturation

Secondary
Sorption Drying Factor 

S Matrix S Critical dS2/dt φ

Status

• Bucket test 
under 
development

• Computational 
model began 
with PRS 
(OPC)/now TPF

Work to relate this 
to air content 
and/or SAM 
number is 
underway in OK 
TPF

Work is underway 
to obtain these 
values from the 
formation factor 
OK TPF, TPF
*simplified

Started with the 
TPF, however may 
need a separate 
project & may be 
needed for 
modeling warping

TPF – transportation pooled fund
OPC – ordinary Portland cement



 Freeze-thaw service life model, salt damage 
assessment, and transport model (finalizing)

 Standardized test procedures (previous two slides)
 PASSRigidTM software with non-mixture AQCs + 

durability AQCs (Spring 2019)
 Report on models and PASSRigidTM (Fall 2019)  
 Shadow project – C470 Colorado (2018)
 Additional upcoming shadow project – additional 

States (Summer 2019 and 2020)

PCC PRS Project Status
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 Whiteboard Informational Videos (Spring 2019)
 Informational Video (Spring 2019)
 Implementation Report, Technical Briefs, 

Presentations (Summer 2019)

PCC PRS Project Status
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 Additional shadow projects in 2019 and 2020 
(seeking agency participants)

 Workshops and in-person training (2019 and 2020)
 PRS Marketing Implementation Report and 

Informational Materials (2019/2020)
 PRS & PEMD Framework Development Report 

(tools, guidelines, advance PRS & PEMD durability 
test procedures for implementation) (2019/2020)

PCC PRS Project Status
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 Performance Related Specifications (PRS) are the 
implementation of some Performance Engineered 
Mixture Design (PEMD) tests to model expected life; 
and provide incentives/disincentives for performance

 PRS also includes other non-mixture quality 
characteristics such as slab thickness, initial 
smoothness, and dowel alignment to determine 
expected life

 Durability and structural performance is modeled in 
PASSRigidTM

 Agency provides incentives for exceeding performance 
criteria and disincentives for not meeting performance 
criteria based on modeled performance 

PRS Summary
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Matthew.Corrigan@dot.gov
202-493-3365

Questions? Interested in Shadow Projects?
40

Michael.Praul@dot.gov
207-512-4917
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Ahmad.Ardani@dot.gov
202-493-3422
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