FHWA Program Update

National Concrete Consortium, Spring 2019 April 2 • Denver, CO

Images FHWA unless otherwise noted.

MICHAEL F. PRAUL, PE SENIOR CONCRETE ENGINEER FHWA, OFFICE OF INFRASTRUCTURE

U.S. Department of Transportation

Federal Highway Administration
Office of Infrastructure

Welcome Dr. Leslie McCarthy

2

- Past experience with FHWA
- Lead role in FHWA asphalt activities
- Mobile Asphalt Testing Trailer Program manager
- Remote employee (Philadelphia area)

Technology and Innovation Deployment Program

- FAST Act provides \$67,500,000 each year to carry out a Technology and Innovation Deployment Program (TIDP) relating to all aspects of highway transportation.
- FAST Act reserves \$12,000,000 each year from the TIDP program to accelerate the implementation and deployment of pavement technology (AIDPT).
- AIDPT instructs FHWA to promote, implement, deploy, demonstrate, showcase, support, and document the application of innovative pavement technologies, practices, performance, and benefits.

AIDPT Cooperative Agreements

- FHWA has awarded multiple Cooperative Agreements under the AIDPT program between 2013-2017.
- Advantages of cooperative agreement vehicle:
 - Technical guidance and assistance
 - Ability to leverage Federal investments with private funding and partnerships
 - Collaboration increases public buy-in of deliverables
- Awards made to universities, transportation centers, others (ex. Asphalt Institute, National Asphalt Pavement Association, National Concrete Pavement Technology Center, American Concrete Institute, etc.).

Substantial Federal Oversight

Prior to/at Award

- Technical panel evaluates applications and selects recipient
- Subawardee/subcontractor review and approval
- Key personnel review and approval

During Agreement Performance

- Technical assistance and guidance
- Review and approval of initial work plan (including outreach and dissemination plan)
- Technical, performance, and financial monitoring
- Review and acceptance of agreement deliverables

Concrete Cooperative Agreement Topic Areas

- Extending Pavement Life and Performance
- Reducing Initial and Life Cycle Costs
- Accelerated Construction Techniques
- Design Criteria and Specifications (PEM)
- Non-Destructive Testing
- Technology Transfer
- ★ Please share ideas with Mike Praul and/or Peter Taylor

Anticipated Deliverables

- Best PracticesGuides
- Demonstration Projects
- Specification Language
- Literature Reviews
- Marketing New Technology

- QC Tools
- State-of-the-Practice Reports
- Technical Briefs
- Webinars
- Workshops

PEM Implementation Incentive Funds

- Available to pooled fund participating states
- Eight states currently participating (NY, PA, IA, WI, MN, NC, IL, SD)
- Deadline for new applications: 5/31/19
- Reports coming from participating states will be shared with PEM Pooled Fund and available to all
- Federal Lands projects coming!

2019 MCT State Site Visits

- South Carolina
- North Carolina
- Kansas

- California
- > Florida
 - > Vermont

MCT at Conferences

2016

2017

- PA Concrete Conference
- International Society for Concrete Pavements (TX)
- Arkansas American
 Concrete Pavement
 Association (ACPA)
 Conference

- NE Concrete Conference
- VA Concrete Conference
- National Society of Professional Engineers (TX)
- OH Transportation Engineering Conference
- AZ Equipment Expo
- AZ Pavements & Materials Conference

MCT at Conferences

2018

2019

- MD Concrete Conference
- NY Construction Materials Association Conference
- TX Concrete Conference
- IN American Society of Civil Engineers Annual Meeting
- Roadway Management Conference (PA)
- ConcreteWorks Conference (MA)

- PA Concrete Conference
- National Road Research Alliance (MN)*
- UT Concrete Conference*

TFHRC Concrete Research Update

National Concrete Consortium Spring 2019

Ahmad A. Ardani, P.E.

Infrastructure Materials Team, Turner-Fairbank Highway Research Center, FHWA

Performance Engineered Mixtures (PEM) Assessment & Validation of Durability Testing Procedures

Stage 1: Impact of Conditioning Regimes on Transport Properties

TFHRC/NRMCA Collaboration (2-Phased study)

Objectives:

- How FF is affected in different curing regimes
 - ➤ Understand how DOS, DOH & PS resistivity varies in different curing regimes
- Prediction of PS resistivity using NIST model Vs. measured PS
- Bucket test, reasonable indication of PS resistivity!
 - > Eliminates the need for PS expression, streamlining FF

Experimental design:

4 mixtures & 7 different curing regimes

EFFECT OF DIFFERENT CURING CONDITIONS ON TRANSPORT, PROPERTIES

Phase I Status:

- Enormous amount of data acquired analyzed in phase I:
 BR, SR, PSR, FF, RCPT, DOH, DOS, Leaching, NIST Model
- Testing on phase I mixes is complete
- Data analysis is about to be finalized
- Draft Phase I report on FF & bucket test under internal review

General Findings: A glimpse

➤ Values of DOS, FF, Concrete & PS Resistivity depends on the curing regime and the mix

General Findings: A glimpse

➤ Values of DOS, FF, Concrete & PS Resistivity depends on the curing regime & the mix

General Findings: A glimpse

- ➤ Bucket test assume PS resistivity the same as the resistivity of bucket solution
- ➤ How reasonable is this assumption?
- Reasonable for 2 of the mixes!

Stage 2: F-T Durability, Salt Damage Related Tests

- 19
- Quantify CAOXY using LTDSC
 - Workplan developed
- Modified ASTM C642
 - ➤ Total pore volume, DOS
- Modified C1585: Rate of absorption
- Time to critical degree of saturation: $DOS_{critical} = 85\%$

$$S(t) = S_{Nick} + \emptyset \cdot S_2 \cdot \sqrt{t} \leq DOS_{critical}$$

Upcoming Reports:

- Pore Solution Expression
- Influence of Curing Regimes on FF
- Flyer on FF and Bucket Test

TFHRC/OSU/UT Collaboration

BENCHMARKING MCPT & CCT TO OUTDOOR EXPOSED BLOCKS

- MCPT: Miniature Concrete Prism Test, Clemson U; 8-12 weeks
- CCT: Concrete Cylinder Test, U. of Texas; 9 month

 Problem Statement: Many exposure blocks in Texas & across north America exhibiting signs of ASR, despite passing the ASTM C1293 two-year prism

TFHRC - OSU - UT Collaboration

Research Ideas:

➤ Identify tests that don't promote leaching

Objectives:

- Examine CCT & MCPT as accurate/accelerated ASR mitigation measures
- ➤ Determining duration & expansion limits
- ➤ How it affects pore solution chemistry!

BENCHMARKING MCPT & CCT TO OUTDOOR EXPOSED BLOCKS

OVERALL PLAN

- ≥ 2 reactive coarse aggregates (Spratt, Placitas)
- ≥ 2 reactive fine aggregates (Jobe, Wright)
- Mitigation Measures:

 Ash

 Ash

 Ash

 Slag + SF

 Lithium

 5%SF

 40%C

 Ash

 Slag 35/5

 4.9g/yd³
- ≥ 40 mixes total, TFHRC responsible for 15
- > Results:
 - ➤ Encouraging results: MCPT, confirming field data CCT Mimics C1293
 - > Final Report, September 2019

Quantifying Fly Ash Adsorption Using Sorbsensor

TFHRC/Headwaters Inc. Collaboration

- Fluorescence-base technology!
- Fly ash can adsorb AEAs & expose concrete to F-T durability
- Foam index: subjective, relying on visual observation, high variability

Objective: Quantifying fly ash adsorption capacity by fluorescence properties

Foam Index: Stages of foam formation

No foam

Foam stability in progress

Stable foam

Sorbsensor - How it Works!

- Surrogate surfactant: nonylphenol ethoxylate (P10)
- 10 different ashes, 8 different states

Procedure:

- Fly ash is mixed with a solution containing 150 ppm of P10
- The remaining P10 fluoresces as existed by UV
- ► Fluorescence intensity < concentration of P10
- Same 10 fly ashes tested with 3 different AEAs using Foam Index

Adsorption Capacity Measurement: Sorbsensor Vs. Foam Index

- Fluorescence results and
 Foam Index correlated well
- Each AEAs exhibited different correlation curve
- Game changer:
- No guesswork!

SBIR project (PhosphorTech): Advance this technology's capabilities: Broader UV spectral range, use with any AEAs (not limited to P10)

FHWA Performance Related Specifications (PRS) Update

MATTHEW CORRIGAN, PE CONSTRUCTION RESEARCH ENGINEER FHWA, OFFICE OF INFRASTRUCTURE R&D

U.S. Department of Transportation

Federal Highway Administration
Office of Infrastructure

PRS Elevator Speech

- Performance related specifications (PRS) compare design expectations to what was constructed, and b accordingly.
- "Predict," or more correctly "model," as-constructed performance for each constructed lot on a project by measuring construction quality characteristics.
- Provides a rational, technical, and defensible framework for awarding a contractor incentives and disincentives for construction quality by relating the as-constructed modeled performance to the target or as-designed performance.
- Contractors have freedom to innovate in order to achieve targeted performance.

Concrete Pavement Performance

Design

Pavement ME **AND**Engineering Experience and
Expertise (Foundation, Design
Features, factors not provided in
Pavement ME)

Materials

PEMD: Lab Qualification for Concrete Mixture Design AND Other Lab Tests for Other Materials

PRS: Expected Life Acceptance for Concrete Mixture AND also includes Non-Mixture Properties

ALL THREE COMPONENTS ARE IMPORTANT FOR PERFORMANCE

U.S. Department of Transportation

Federal Highway Administration
Office of Infrastructure

Performance Engineered Mixture Design (PEMD)

Lab Mixture Qualification **Before Construction**

PP84 Parameter

Aggregate Stability

 D-Cracking, Alkali-Aggregate Reactivity

Transport Properties

 Choose from w/cm ratio, formation factor, ionic penetration

Hydrated Cement Paste F T Durability

 Choose from air content, SAM number, or time critical saturation

Hydrated Cement Paste Durability – Salt Damage

Choose from several options

Slab Warping/Cracking Due to Shrinkage

Choose from several options

Concrete Strength

 Choose from flexural strength or compressive strength

Workability

Choose from Box test or V-Kelly test

Non Mixture Factors

N/A

Performance Related Specifications (PRS)

Determination of Expected Pavement Life for Payment

Performance Tests and Performance Model(s)

• N/A

 Choose from resistivity or formation factor + matrix porosity

 Choose from air content or SAM number

Design check only

N/A

 Choose from flexural strength or compressive strength

• N/A

 thickness, initial smoothness (IRI), dowel alignment ...

Four Step Approach Towards Durability in PRS

Assess
Performance
w/ Standard
Tests

Considerations:

- Ability to assess performance
- Relationship to fundamental properties
- Ease of use
- Cost

Convert Test
Results to
Fundamental
Properties

Examples:

- Measure Resistivity
- Account for Pore Solution
- DetermineF- Factor

Relate
Properties w/
Exposure
Conditions

Use Exposure,
Material Properties,
and Models to
Estimate
Performance

Establish
Performance
Limits and
Measure

- Set
 Performance
 Limits
- Use Tests to Measure
- To Assure that You Receive what You Specified

PRS Summary

- Performance Related Specifications (PRS) are the implementation of some Performance Engineered Mixture Design (PEMD) tests to model expected life; and provide incentives/disincentives for performance
- PRS also includes other non-mixture quality characteristics such as slab thickness, initial smoothness, and dowel alignment to determine expected life
- Durability and structural performance is modeled in PASSRigid $^{\!\mathrm{TM}}$
- Agency provides incentives for exceeding performance criteria and disincentives for not meeting performance criteria based on modeled performance

F Factor Inputs Status

Name	S.S. Pute Statistics Consumble Metrics To the Consumble Statistics To	Resistivity Cell Alligator Clips Probes		FLOOT
Key Variable	Bulk Resistivity	Pore Solution Resistivity	Temperature Correction	Surface Resistivity
	ρ _{Bulk}	ρ Soln	E _{AC}	ρ _{Surface}
Status	Complete: Conditioning improved and includes the 'bucket test'	Complete: There are several ways to obtain and it is simple to measure after obtaining solution	Complete: This is needed and exists for a clear way to perform temp. corrections	 Identical to bulk when done correctly Requires a task force to revise*

Freeze Thaw Model Inputs Status

Name				
Key Variable	Matrix Saturation	Critical Saturation	Secondary Sorption	Drying Factor
	S _{Matrix}	S _{Critical}	dS ₂ /dt	ф
Status	 Bucket test under development Computational model began with PRS (OPC)/now TPF 	Work to relate this to air content and/or SAM number is underway in OK TPF	Work is underway to obtain these values from the formation factor OK TPF, TPF *simplified	Started with the TPF, however may need a separate project & may be needed for modeling warping

TPF – transportation pooled fund OPC – ordinary Portland cement

PCC PRS Project Status

- Freeze-thaw service life model, salt damage assessment, and transport model (finalizing)
- Standardized test procedures (previous two slides)
- PASSRigidTM software with non-mixture AQCs + durability AQCs (Spring 2019)
- Report on models and PASSRigidTM (Fall 2019)
- Shadow project C470 Colorado (2018)
- Additional upcoming shadow project additional States (Summer 2019 and 2020)

PCC PRS Project Status

- Whiteboard Informational Videos (Spring 2019)
- Informational Video (Spring 2019)
- Implementation Report, Technical Briefs,
 Presentations (Summer 2019)

PCC PRS Project Status

- Additional shadow projects in 2019 and 2020 (seeking agency participants)
- Workshops and in-person training (2019 and 2020)
- PRS Marketing Implementation Report and Informational Materials (2019/2020)
- PRS & PEMD Framework Development Report (tools, guidelines, advance PRS & PEMD durability test procedures for implementation) (2019/2020)

PRS Summary

- Performance Related Specifications (PRS) are the implementation of some Performance Engineered Mixture Design (PEMD) tests to model expected life; and provide incentives/disincentives for performance
- PRS also includes other non-mixture quality characteristics such as slab thickness, initial smoothness, and dowel alignment to determine expected life
- Durability and structural performance is modeled in PASSRigid $^{\!\mathrm{TM}}$
- Agency provides incentives for exceeding performance criteria and disincentives for not meeting performance criteria based on modeled performance

Questions? Interested in Shadow Projects?

Michael.Praul@dot.gov

207-512-4917

Ahmad.Ardani@dot.gov

202-493-3422

Matthew.Corrigan@dot.gov

202-493-3365