

Role of Minimum Cement Contents in Concrete Specifications and Mixture Proportioning

Karthik Obla Spring 2019 National Concrete Consortium Denver, CO

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

BUILD WITH STRENGTH

Introduction

BUILD WITH STRENGTH

- Should Minimum CM content be specified?
- Mixture proportioning with low CM content

Research Objective

D WITH STRENGT

Examine influence of CM content on concrete performance at specific *w/cm* Parallel tests at Iowa State University

Experimental Variables

w/cm: 0.40, 0.47, 0.55
CM – 417 to 720 lb/yd³
Paste: 22%, 24%, 27%, 31% at same CA/FA
Total of 20 non-air concrete mixtures
40% slag cement, 100% OPC, 25% Class F

D WITH STRENGT

Aggregate Voids Testing (ASTM C29)

Concrete Tests Conducted

Slump – add Type F HRWR if slump<1 in.

Air content, density, temperature, setting time

Compressive strength

RCPT (ASTM C1202)

RMT (AASHTO TP64)

Sorptivity (C1585)

Shrinkage (C157)

D WITH STRENGT

Compressive Strength – 28 days

BUILD WITH STRENGTH

PAVE A AHEAD

Compressive Strength – 1 day

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE & AHEAD

DURABLE, SUSTAINABLE, CONCRETE

RCPT – 28 day AC

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE A AHEAD

RMT – 28 day AC

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

BUILD WITH STRENGTH

PAVE AHEAD

Initial Sorptivity

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE AHEAD

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

DURABLE, SUSTAINABLE, CONCRETE

Summary

Higher CM contents increase mixing water demand For given *w/cm* increasing CM content: Same strength Increased chloride penetrability, sorptivity,

shrinkage

D WITH STRENG

Does not appear to be a technical basis for specifying minimum CM content or a maximum *w/cm* when not needed

Mixtures with Low CM content

How low can you go?

Mixtures with Low CM content

How low can you go? Impact of air entrainment? Impact of SCMs and WRA Cast 12 more mixtures

BUILD WITH STRENGT

Minimum CM content for acceptable performance – Effect of *w/cm*

For water slump of 1 in. before WR addition

Minimum water, paste volume – Effect of *w/cm*

For water slump of 1 in. before WR addition

	0.40	0.47	0.55
40% SL	265/28%	260/26%	250/24%
PC		265/26%	
25% FA		255/26%	
40% SL A		240/24%	

But what if WRA can be added earlier?

BUILD WITH STRENGTH

Minimum CM content for acceptable performance – Effect of *w/cm*

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE AHEAD

Minimum water, paste volume – Effect of *w/cm*

For no measurable water slump (use of WRA)

	0.40	0.47	0.55
40% SL	202/22%	218/22%	230/22%
PC	207/22%	221/22%	235/22%
25% FA	199/22%	212/22%	225/22%
40% SL A		203/20%	

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

BUILD WITH STRENGTH

Minimum CM content for acceptable performance

0.47 w/cm 40% slag mix

BUILD WITH STRENGTH

Condition	Water	СМ	PV, %
Control	300	640	30%
Water slump=1 in.	260	550	26%
No water slump (NWS)	218	460	22%
NWS - air entrained	203	430	20%

Benefits of not specifying minimum CM

- Better concrete performance
- **Optimized mixtures**

D WITH STRENGT

- Sustainable construction
- Incentive to lower variability, i.e. improve quality
- Knowledgeable producers

How to specify to get low CM content concrete?

What if producers reduce CM contents too low?

What if we state a maximum CM content?

What if we state a maximum paste volume?

What if we state a strength range?

Reasonable performance specs – best solution!

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

SUSTAINABLE, CONCRETE

Thank you

BUILD WITH STRENGTH

Karthik Obla Spring 2019 National Concrete Consortium Denver, CO

