

NRRA Concrete Pavement Research Update

Tom Burnham, P.E. | Senior Road Research Engineer, Minnesota Department of Transportation

Spring 2019 NCC Meeting, Denver, CO

4/2/2019

State DOT Members

Associate Members

Husky Asphalt

TESTING, INC.

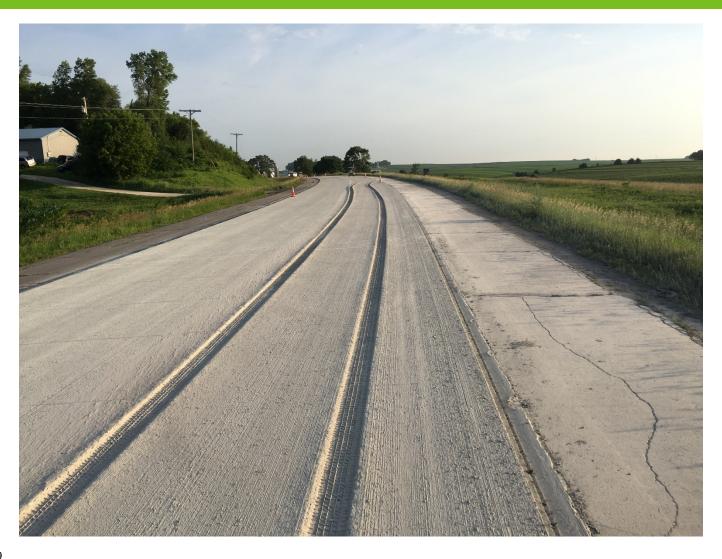
4/2/20198

ENVIRONMENTAL"

MnROAD Facility

MnROAD

- Full-scale, cold climate pavement test facility near Albertville, MN
- 3.5 mile (5.6 km) "Mainline" section with diverted interstate I-94 traffic
- 2.5 mile (4 km) "Low Volume Road" closed loop test track
- Multiple pavement test sections
 - **≻** Asphalt
 - **≻** Concrete
 - ➤ Overlays
- Operation began in 1994
 - ➤ Current conducting Phase 3 experiments (2016)



Provides opportunities for BOLD ideas!

Outline

- Impacts of Early Loading on Concrete Pavement Performance
 - ➤ New pavements
 - **≻**Repairs
- Fiber-Reinforced Concrete Pavement
 - ➤ Thin slabs on grade
- Compacted Concrete Pavement
 - >RCC with a surface texture

Early loading!

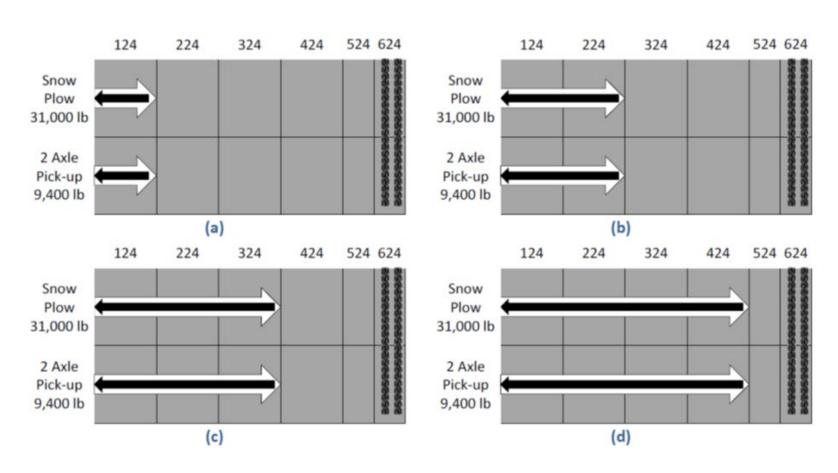
Impact of Early Opening to Traffic

Study Objectives

- > Evaluate visible and non-visible immediate damage caused by early age loading
- > Quantify the effect of early loading damage on long-term performance
- > Determine minimum strength at opening or other measurable variables associated with this parameter
- ➤ Recommend strategies for minimizing or avoiding early loading damage detrimental to long-term performance

Early Opening to Traffic

MnROAD Cells 124-624


(Low Volume Road Traffic)

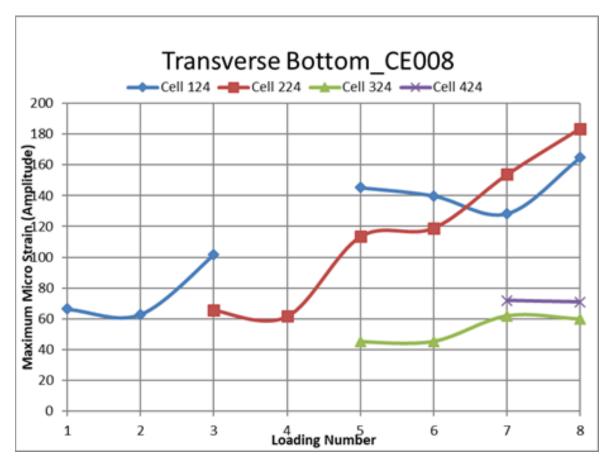
- > Standard panel size 12'W x 15'L
- > Standard concrete mix
- Doweled joints
- > Early sequential traffic loadings
 - Based on maturity
- > Vehicle driven across concrete before full set to cause visible damage

6" PCC

6" Class 6

Sand Subgrade

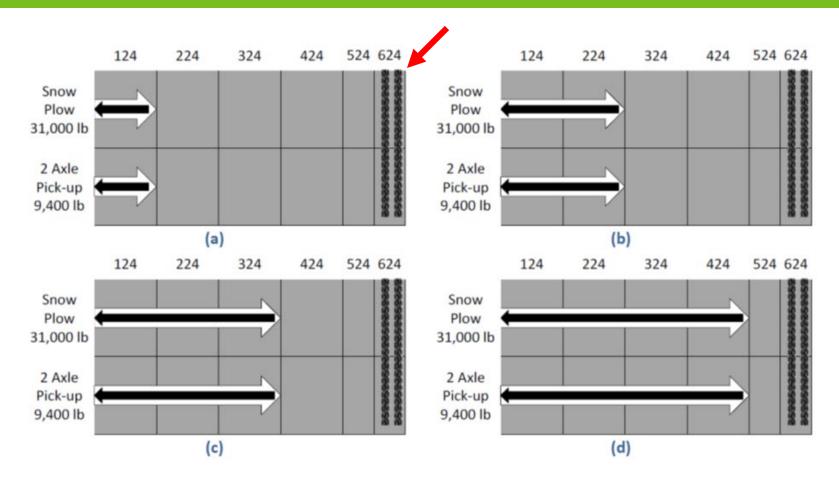
4,000 lb axle vs 14,000 lb axle loads


4,000 lb axle vs 14,000 lb axle loads (1st cell loaded @ 3hrs)

Loading Plan

Cell x24 Early Loading Sequence							
Maturity	Flexural						
(Deg-Hr)	(psi)	Loads applied to lanes					
100	73	1st Load on Cell 124 (forward and back)					
200	196	1st Load on Cell 224, 2nd load on Cell 124					
300	267	1st Load on Cell 324, 2nd load on Cell 224, 3rd load on Cell 124					
400	318	1st Load on Cell 424, 2nd load on Cell 324, 3rd load on Cell 224, 4th load on Cell 124					

Actual Loading


Age at Loading (HRS)								
	Loaded Cells				Control	Tire Rut		
	124 IL	224 IL	324 IL	424 IL	524 IL	624 IL		
	124 OL	224 OL	324 OL	424 OL	524 OL	624 OL		
Paving Time	12:15	11:15	10:40	9:50				
Paired Repetition 1	3.00	4.00	4.55	5.40		2 Hr		
Paired Repetition 2	4.25	5.25	5.80	6.65				
Paired Repetition 3	6.55	7.55	8.10	8.95				
Paired Repetition 4	8.15	9.15	9.70	10.55				

Dynamic Strain Sensor Data

Spring 2019 Cell 124 Condition

Damage from 4,000 lb axle

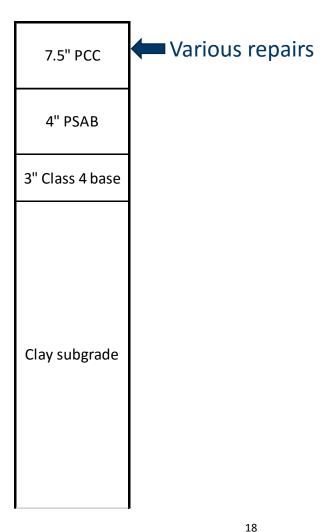
Early Loading of Cell 624

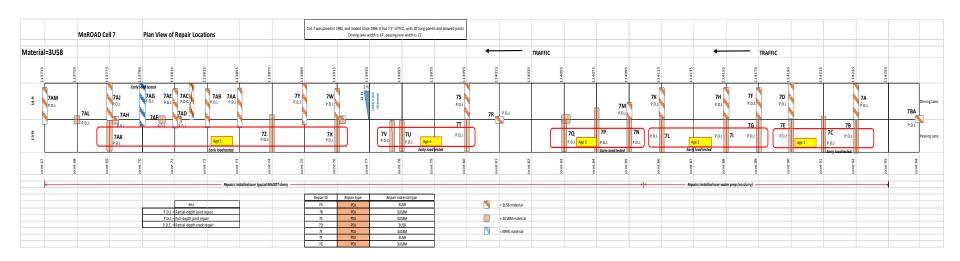
4,000 lb axles @ 2 hrs (very warm day!)

Early Loading of Cell 624

Inside lane

Outside lane




Spring 2019 Cell 624 Condition

Impact of Early Opening on Repairs

- MnROAD Cells 7 & 8 [Constructed 1993] (Mainline interstate traffic)
 - Full panel replacements, full-depth joint repairs, and partial-depth repairs
 - **≻**Various repair materials
 - o MnDOT spec. 3U18M
 - MnDOT spec. 3U58
 - Contractor design high early mix
 - Internal cure mix
 - Roller Compacted Concrete
 - 1 and 2 lifts
 - **≻** Early sequential traffic loadings

Repair locations and loading scheme

Partial Depth Repairs

Full Depth Repairs

Internal Cure Mix - High Early Strength

1 and 2 lift RCC (with dowel bars)

Small roller compaction

Early Age Loading

Cell 8 RCC Repair

RCC repair condition - March 2019

Cell 8 Internal Cure Mix Repair

Internal cure mix repair condition - March 2019

Fiber-Reinforced Concrete On Grade

• MnROAD Cells 506, 606, 706, 806 (Mainline interstate traffic)

➤ All cells: 6' x 6' panels

> Fiber content:

Cell 506: No fibers (control)

> Cell 606: 20% RSR (ASTM C1609)

> Cell 706: 30% RSR (ASTM C1609)

> Cell 806: 0.75% by volume

5" Fiber Reinforced Concrete

11" Drainable aggregate base

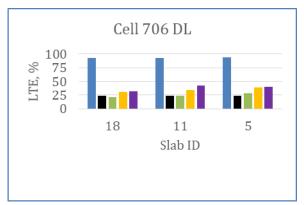
3" Existing Class 5 base

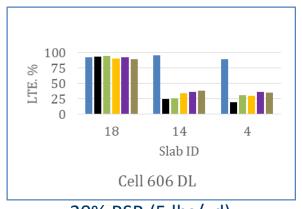
Clay subgrade

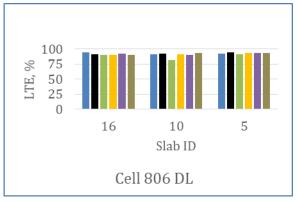
Cell 506 Control (No fibers)



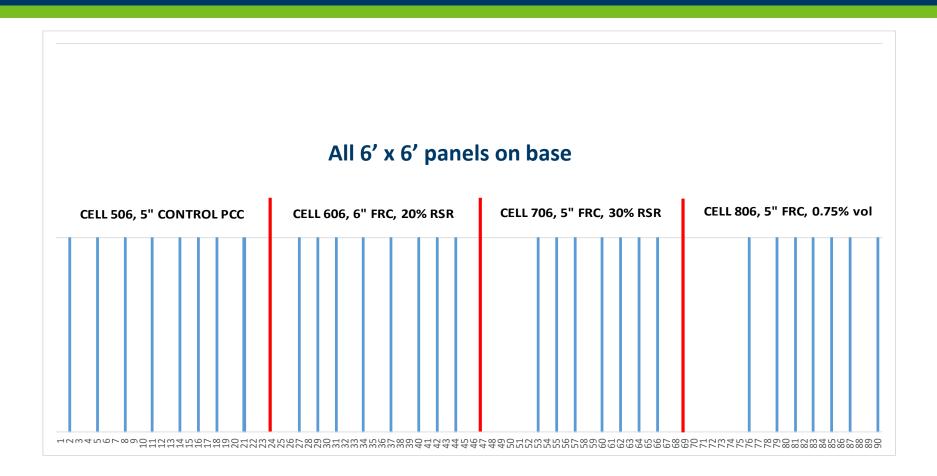
March 2019 condition: Faulted joints


FRC Cells 506 – 806:Transverse Joint Faulting


FRC Cells 506 – 806: Joint Load Transfer Efficiency


No fibers

30% RSR (8 lbs/yd)



20% RSR (5 lbs/yd)

0.75% volume (11.7 lbs/yd)

Early Transverse Joint Deployment

Observation (pavement edge) on 7-5-17, age range: 5 to 9 days, no traffic loads

Compacted Concrete Pavement

Scott City, Missouri : Cells 551 – 553

(Low volume traffic)

- ➤ Cell 551: Control, 550′, 15′Lx12′W panels
- **→ Cell 552: Short panel, 555', 12'Lx12'W panels**
- ➤ Cell 553: Fiber-reinforced, 280', 15'Lx12'W panels
- **►** Instrumented by MnROAD staff
- ➤ Southbound Paved 2018
- ➤ Northbound Spring 2019

Broom Finish

6" RCC

4" Base

12" Lime Treated Subbase

Broomed Surface

Questions?

Tom Burnham

tom.burnham@state.mn.us