

Mobile Mixers: History, Performance & Use

Spring 2019 National Concrete Consortium

Collin Robinson
Product Manager
crobinson@cementech.com

Concrete

Most widely used material in construction the world.

• 3000BC – Egyptian Pyramids

• 1824 – Portland Cement Invented

Concrete

NATIONAL CONCRETE CONSORTIUM

• Bellefontaine, OH

• 1891 – First Concrete Street

• 1923 – Ready Mix

- Certified plant keeps mix consistent
- Specifications written around ready mix
- Offload concrete quickly
- Simple operation

- Ready mix delivery model used for 100 years
- Is one tool a fit for all projects?

Project Needs

- What if projects require:
 - ✓ Multiple mix designs
 - ✓ Specialty mixes such as latex, polymers or fast-setting
 - ✓ Several pour locations
 - ✓ Flexibility in the schedule

- ✓ On demand concrete
- ✓ Night or weekend work with various amounts and/or mixes
- ✓ Remote work sites with limited access

How it Works

Admixtures

How it Works

Pump Master Auger

- 278 280 RPM
- 10 15 seconds of mix time
- 30° Angle

Weight vs Volume

VS

ASTM C94

ASTM C685

Calibration Process - Tools

- Containers
- Scale
- Stop watch
- Clipboard

Calibration Process

Typical Order of Calibration:

- 1. Cement
- 2. Sand
- 3. Stone

 While the unit is empty of sand or stone, cement is discharged into the container, timed and weighed.

Calibration Process - Cement

• 3-5 trials is recommended

Recorded Information:

- 1. Record Discharge Time seconds
- 2. Counts number
- 3. Weight of material lbs
- The goal is to verify +/-1% accuracy between the 3-5 trials

Calibration Process - Sand

 Discharge a specified number of sand counts into the bin

Recorded information

- 1. Counts: number
- 2. Weight of material: lbs
- No need to time the sand or stone, timing is based off the cement discharge

Calibration Process – Stone

• 3-5 trials is recommended

Empty sand & load rock

Repeat process

Calibration Process – Mix Design

1	Α	В	С	D	E	F	G	Н		J	K
1	Vo	lumet	ric Co	ncret	e Disp	ense	r Mix	Desig	n Wor	rkshe	et
3	OWNER		Southe	east Constr	uction		ι	Jnit Serial #	55	12	
5	YOUR MIX I	DESIGN (T	his sheet n	nust be fille	d out for ea	ch mix des	sign)				
7	MIX DESIGN	l		4000 PSI				Date			
8		•		ax 8 characters)							
9 10	Materials of	one cubic y	ard:								
11 12	Cement	564	LBS.	100%		ischarge S	peed	86	Counts per	Bag of Ce	ment
13	Cement	6.0	BAGS	1.07		-	e Time (Mir	nute)			
14 15						Aggregate	9				Pounds of
16	Aggregate	Name				# Desired		Aggregate Name			Aggregate
17 18	1	SAND		^		(enter 1, 2, 3, or 4) SAND			1425		
19	•	37	NIND	-	ggregate 1	1		34	MIND		1423
20 21	2	STO	ONE	A	ggregate 2	2		STO	ONE		1625
22 23	3		0								
23 24 25	4		0								
26	Color		OUNCES		Fiber	Chopper		Pounds p	er Yard		
21 28		Low, Mid.									
29		or High Sys	Dilution	Oz/bag							
31 32	Admix # 1										
33 34	Admix # 2										
34 35	Admix # 3										
36		e available on	130, 150, & 2	200 Series un	its only)						
37 38	1 Determin	ne the com	nt ner cubi	c vard							
აუ		ne the count per cubic yard. bags/cubic yard x 86		1		- haz -	540	anunt	auhia		
40 41	6.0			86	counts pe		518		cubic yard.		
43	2. AGGREG						_				
44 45	1425	lbs. fine	aggregate d	livided by	518	counts pe	rcu. yd.=	2.75	lbs. per cou		
46 47							GATE	SETTING	(from graph)	5.0	
48 49	3. AGGREGATE 2: Divide the lbs. of coarse aggregate per cubic yard by the count per cubic yard.										
50	1625	lbs. coars	e aggregate	divided by	518	counts pe	rcu.yd.=	3.13	lbs. per cou	ınt.	
52							GATE	SETTING	(from graph)	6.5	

D	escription	4000 PSI				
Total		518	Counts / Cu	bic Yard		
	Cement	1.09	Ibs./ Count		Dial	
Ag	gregate 1	2.75	Ibs./ Count		Setting	Oz/Min
Aggregate 2		3.13	Ibs./ Count	Admix # 1	ERROR	0.0
	*Water	0.00	Ibs./ Count	Admix # 2	ERROR	0.0
Aggrega	ate 1 Gate	5.0		Admix # 3	ERROR	0.0
Aggregate 2 Gate		6.5		Color	#DIV/0!	0.0
W	ater Meter			Fiber Chopper	#DIV/0!	0.0

Calibration Process – Verify

- Verify the mix design by running yield tests
- Slump and air testing can also be used to verify the quality of the mix

Calibration Process – Digital

- Digital Calibration simplifies the process
- Eliminates stop watch and clip board

 Sand, stone, cement, admixtures, water, fiber and color calibrations are all stored

 Digital mix designs are also stored on the computer

- Automated gates used during calibration and mix design process
 - Accurate to 1/16"
 - Less human error

Barrel vs Mobile Mixers

Myth #1: Volumetric Concrete mixing is a new and unproven technology

- 1965 Patent granted for the Concrete-Mobile
- Over 2,500 Concrete-Mobiles were produced by 1980
- Over 10,000 Volumetric Mixers produced by 2000
- In use in every state in the United States and 60 countries
- Used by the U.S. Military, state DOT and cities
- City of Des Moines has been operating a mixer for 15 years

Myth #2: Volumetric mixers cannot match the accuracy and consistency of a batch plant

- Specification ASTM C94 vs. ASTM C685
 - Same tolerances on all materials
 - More restrictions on ready mix as water-cement contact occurs at the plant, not at the job site
- ACI 304.6R "Guide for the Use of Volumetric-Measuring.."
 VMMB (NRMCA) approval and specification
- AASHTO M241

Concrete Comparative Testing – VMMB – 12/5/13

Table 4. Average* Concrete Con	npressive Streng	th (psi) Test Resu	ılts, (ASTM C 39)			
	Mixing/Production Method					
Age	Drum Mixed	Volumetric M w/o WR	/lixed Volumetric Mixed w/ WR ¹			
7 Day	2943	3338	3296			
28 Day	4085**	4201**	4365			
56 Day	4563	4647	4679			

¹ Additional Test

Air content, slump, unit weight testing

Terracon

^{*}This is an average of the compressive strength test results of specimens of all the four batches at the respective test age.

Myth #3: Volumetric mixers don't produce "good concrete" (e.g. not enough mix time)

Many examples of quality concrete:

- Bridge deck overlays Virginia
- Street replacement/repair Texas
- Airport runway repairs Oregon, Australia
- Structural elements
- Pool builders, Soil retention Florida
- Pervious concrete California
- Light weight concrete by foam and lightweight aggregates

Myth #4: Volumetric mixers cannot handle large production pours or projects

- A single piece of equipment can be reloaded at the jobsite No time or fuel wasted in transit
- Volumetric equipment is capable of production rates in excess of 90 cubic yards per hour
- Many examples of large scale projects done with volumetrics
 - Fermi Labs 28,000 CY of concrete in 1 month with 1 machine
 - Common volumetric model on the market today will produce 1 CY of concrete per minute

Myth #5: Volumetric mixers are too complex to operate and have too long a learning curve

- Like other jobsite equipment, proper training of operators is a must
- An operator of a volumetric mixer must have more training than a typical barrel mixer operator – "batch plant on wheels"
- We offer extensive training in the operation, maintenance and calibration of their equipment
- Typical "day-to-day" operation is straight-forward and repeatable

Automated Units

- Electronic controls
 - Simple Operation
 - CAN wiring simplifying maintenance
 - Technology based infrastructure
- Pre-programmed mix designs
- Automated gate system
- Printable batch ticket with each pour

DOT Approved

STANDARD SPECIFICATIONS

FOR CONSTRUCTION

AND MAINTENANCE OF

HIGHWAYS, STREETS

AND BRIDGES

ARIZONA DEPARTMENT OF TRANSPORTATION

2017 Revision to the

2015 Edition

Uniform Standard Specifications and

Details for Public

Maryland Department of Transportation

State Highway Administration

CONSTRUCTION AND MATERIALS

Works Constru

ROAD AND BRIDGE CONSTRUCTION

NORTH CAROLINA DEPARTMENT OF TRANSPORTATIO RALEIGH

> DARD SPECIFICATI FOR DS AND STRUCTU

> > ANUARY 2018

LOUISIANA STANDARD SPECIFICATIONS ROADS AND BRIDGES

DEPARTMENT OF TRANSPORTATION 2016

EDITION DEPARTMENT OF LOUISIANA AND DEVELOPMENT

SPECIFICATIONS

Commonwealth of Pennsylvania

Publication 408/2003 (Change No. 4, Effective 10/02/05) www.dot.state.pa.us

www.marylandroads.com July 2008

DOT Approved

NATIONAL CONCRETE CONSORTIUM

- Arizona
- California CalTran
- Maryland
- North Carolina
- Illinois
- lowa
- Louisiana
- Texas

- Florida
- Minnesota
- New Mexico
- Alabama
- Washington
- Oklahoma
- Georgia

Benefits

- Fresh, on-demand concrete
 - Stop and start as needed
- Multiple mix designs from a single load
- Not limited by travel time or distance
- Reduced clean out time, water, materials
- Specialty concrete latex, fast-setting, etc.

Q&A

