Concrete Mixtures for Pavements

Dr. Peter Taylor PE

With thanks to
Dr. Xuhao Wang
Dr. Ezgi Yurdakul
Design

• Choosing what you need
 • All concrete:
 • Workability, strength development
 • Pavements / slabs on grade
 • Durability, cracking risk
 • Airfields
 • FOD, edge slump
Proportioning
Proportioning Approaches: Past

- Structural concrete: 1:2:4
- Other concrete: 1:3:6
- Waterproof concrete: Add salt
- No chemicals
- No SCMs
- Precision was ugly
- Bulking made it worse
Proportioning Approaches Present

- **ACI 211**
 - Last revised in 1991
 - Linear
- **Developed**
 - Before water reducers
 - Before supplementary cementitious materials
- **Primarily focused on structural concrete**
 - 100 mm (4") slump
 - 30 MPa (~4000 psi)
Workability
Workability
Preconceptions

- More cement = more strength
- Strength is everything
- Slump indicates quality
- Gradations of individual fractions are critical
How do we proportion to achieve design goals?

<table>
<thead>
<tr>
<th></th>
<th>Workability</th>
<th>Transport</th>
<th>Strength</th>
<th>Cold weather</th>
<th>Shrinkage</th>
<th>Aggregate stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type, gradation</td>
<td>✓ ✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Paste quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air, w/cm, SCM type</td>
<td>✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>and dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paste quantity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vp/Vv</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓ ✓</td>
<td>-</td>
</tr>
</tbody>
</table>
Proportioning

Filler
Gradation

Glue
What sort
How much
Step 1 Paste Quality

- Binder type
 - Cement type
 - SCM type and dosage
- w/cm
 - ~0.38-0.42
- Air void system
 - <0.2 SAM
 - <0.008 in. spacing factor
 - >5% in place
 - Stable
Step 2 Aggregate system

- Choices…
 - ASTM C33?
 - Or combined?:
 - Haystack
 - Shilstone Plot
 - Power 45
 - Tarantula
An Experiment

• Combined gradation matters
Step 3 Paste Content
Step 3 Paste Content
Step 3 Paste Content
Step 3 Paste Content

- Need a minimum paste for workability
- Excess has a:
 - Small negative effect on strength
 - Negative effect on permeability, shrinkage, cost
- “Optimum” depends on:
 - Aggregate type
 - Gradation
 - Binder type
- Typically $V_v \sim 150-200\%$
Workability

![Graph showing the relationship between Stump, in., and Paste/Voids, % by volume for different materials (400, 500, 600, 700).]
Strength

![Strength Graph](chart)

- **w/c - 0.35**

- **Compressive Strength, psi**
 - 1 day
 - 3 day
 - 28 day

- **Cement Content, pcy**
 - 300 to 800
Air Permeability

![Graph showing air permeability index with cement content and w/c 0.35.](image)
Rapid Chloride Penetration

![Graph showing the relationship between Adjusted Charged Passed (coulombs) and Cement Content (pcy) for different w/c ratios. The graph includes data points for w/c ratios of 0.25, 0.40, 0.45, and 0.50. The data shows a positive correlation between adjusted charged passed and cement content, with higher w/c ratios leading to increased adjusted charged passed.]
Doing the Sums

• The wonders of a spreadsheet and a solver function…
Doing the Sums

• The wonders of a spreadsheet…
Doing the Sums

• The wonders of a spreadsheet…

<table>
<thead>
<tr>
<th>Mixture Proportions</th>
<th>Targets</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pounds</td>
<td>R.D.</td>
</tr>
<tr>
<td>Cement Type 1</td>
<td>342</td>
<td>3.15</td>
</tr>
<tr>
<td>SCM 1 F Ash</td>
<td>85</td>
<td>2.65</td>
</tr>
<tr>
<td>SCM 2 Slag</td>
<td>6</td>
<td>1.00</td>
</tr>
<tr>
<td>Course Agg A85006</td>
<td>1753</td>
<td>2.72</td>
</tr>
<tr>
<td>Fine Agg A25518</td>
<td>1318</td>
<td>2.66</td>
</tr>
<tr>
<td>Intermediate A85007</td>
<td>340</td>
<td>2.43</td>
</tr>
<tr>
<td>Water</td>
<td>180</td>
<td>1.00</td>
</tr>
<tr>
<td>Air %</td>
<td>5.0</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>4019</td>
<td></td>
</tr>
</tbody>
</table>

Cementitious: 428 pcu
Volume of paste: 24.0 %
Volume of aggregate: 76.0 %
Volume of voids: 19.2 %

w/cm: 0.42

% SCM 1: 20 %
% SCM 2: 0 %
Mass of aggregate: 3411 pcu
Excess paste, %: 4.8 %
Trial Batches

- Workability / Admixture dosages / Void ratio
- Air void system
- Setting
- Strength gain
- Permeability
What about uniformity?
Does it Work?

• Before and after reworking the proportions