About the Program for Sustainable Pavement Engineering and Research

The overall goal of the Program for Sustainable Pavement Engineering and Research (PROSPER) is to advance research, education, and technology transfer in the area of sustainable highway and airport pavement infrastructure systems.

About the Institute for Transportation

The mission of the Institute for Transportation (InTrans) at Iowa State University is to save lives and improve economic vitality through discovery, research innovation, outreach, and the implementation of bold ideas.

Iowa State University Nondiscrimination Statement

Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a US veteran. Inquiries regarding nondiscrimination policies may be directed to the Office of Equal Opportunity, 3410 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, telephone: 515-294-7612, hotline: 515-294-1222, email: eooffice@iastate.edu.

 Disclaimer Notice

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors. The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document.

Iowa DOT Statements

Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran's status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or the Iowa Department of Transportation affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation’s services, contact the agency’s affirmative action officer at 800-262-0003.

The preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its “Second Revised Agreement for the Management of Research Conducted by Iowa State University for the Iowa Department of Transportation” and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation.
Abstract

Recent federal legislation requires state highway agencies (SHAs) and local road agencies to utilize performance-based approaches in their pavement management decision-making processes. The use of a remaining service life (RSL) model would be one such performance-based approach that could facilitate the pavement management decision-making process.

This study developed a Microsoft Excel macro and Visual Basic for Applications (VBA)-based Iowa Pavement Analysis Techniques (IPAT) automation tool that Iowa county engineers can use to estimate the project- and network-level pavement performance and RSL. To address this aim, statistics and artificial neural network (ANN)-based pavement performance and RSL models were developed using pavement structural features, traffic, construction history, and pavement performance records obtained from the Iowa Department of Transportation (DOT) Pavement Management Information System (PMIS) and the Iowa county agencies’ database. The accuracy of the models was evaluated using the real database representing Iowa county pavement systems.

The IPAT tool provides a series of options for four pavement types representing Iowa county pavement systems—jointed plain concrete pavement (JPCP), asphalt concrete (AC) pavement, AC over JPCP, and portland cement concrete (PCC) overlay—to estimate RSL through different approaches based on various conditions and distress data availability from an individual county.

The IPAT tool is expected to be used as part of performance-based pavement management strategies and to significantly help decision-makers facilitating maintenance and rehabilitation decisions for better prioritization and allocation of resources.

Key Words
- Iowa county pavements—IPAT tool—pavement condition analysis—pavement distress analysis—pavement management—remaining service life

Security Classification (of this report)
- Unclassified.

Security Classification (of this page)
- Unclassified.

No. of Pages
- 78

Price
- NA
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ix

USING THE IPAT TOOL .. 1
- Document Scope .. 1
- Interface of Main Tool ... 1
- Interface of Sub-Tools ... 17

ILLUSTRATIVE EXAMPLES: PAVEMENT ANALYSIS USING THE IPAT TOOL 40
- JPCP Case: Statistics-Based Model ... 40
- JPCP Case: AI-Based Model .. 47
- AC Case: Statistics-Based Model ... 54
- AC Case: AI-Based Model ... 62
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Predictive model type selection (main) page of IPAT main tool</td>
</tr>
<tr>
<td>2</td>
<td>Pavement type selection page of IPAT main tool</td>
</tr>
<tr>
<td>3</td>
<td>Pavement performance indicator selection page for statistics-based models for various pavement types</td>
</tr>
<tr>
<td>4</td>
<td>Pavement performance indicator selection page for AI-based models for various pavement types</td>
</tr>
<tr>
<td>5</td>
<td>Required data check to launch sub-tool for IRI for statistics-based model for AC pavement type</td>
</tr>
<tr>
<td>6</td>
<td>Required data check to launch sub-tool for IRI for AI-based model for AC pavement type</td>
</tr>
<tr>
<td>7</td>
<td>Flowchart of IPAT tool using statistics-based models for all pavement types</td>
</tr>
<tr>
<td>8</td>
<td>Flowchart of IPAT tool using AI-based models for all pavement types</td>
</tr>
<tr>
<td>9</td>
<td>Flowchart of IPAT tool using AI-based IRI model for JPCP</td>
</tr>
<tr>
<td>10</td>
<td>Flowchart of IPAT tool using AI-based TCRACK model for JPCP</td>
</tr>
<tr>
<td>11</td>
<td>Flowchart of IPAT tool using AI-based IRI model for AC</td>
</tr>
<tr>
<td>12</td>
<td>Flowchart of IPAT tool using AI-based RUT model for AC</td>
</tr>
<tr>
<td>13</td>
<td>Flowchart of IPAT tool using AI-based TCRACK model for AC</td>
</tr>
<tr>
<td>14</td>
<td>Flowchart of IPAT tool using AI-based LCRACK model for AC</td>
</tr>
<tr>
<td>15</td>
<td>Flowchart of IPAT tool using AI-based IRI model for PCC overlay</td>
</tr>
<tr>
<td>16</td>
<td>Sub-tool to predict IRI using statistics-based model</td>
</tr>
<tr>
<td>17</td>
<td>Sub-tool to predict IRI using AI-based IRI approach 1 county model for JPCPs (launch tool 1 in main tool)</td>
</tr>
<tr>
<td>18</td>
<td>Sub-tool to predict IRI using AI-based IRI approach 2 county model for JPCPs (launch tool 2 in main tool)</td>
</tr>
<tr>
<td>19</td>
<td>Sub-tool to predict IRI using AI-based IRI approach 1 PMIS model for JPCPs (launch tool 3 in main tool)</td>
</tr>
<tr>
<td>20</td>
<td>Sub-tool to predict IRI using AI-based IRI approach 2 PMIS model for JPCPs (launch tool 4 in main tool)</td>
</tr>
<tr>
<td>21</td>
<td>Sub-tool to predict TCRACK using AI-based county model for JPCPs (launch tool 1 in main tool)</td>
</tr>
<tr>
<td>22</td>
<td>Sub-tool to predict TCRACK using AI-based PMIS model for JPCPs (launch tool 2 in main tool)</td>
</tr>
<tr>
<td>23</td>
<td>Sub-tool to predict IRI using AI-based IRI approach 1 county model for AC (launch tool 1 in main tool)</td>
</tr>
<tr>
<td>24</td>
<td>Sub-tool to predict IRI using AI-based IRI approach 2 PMIS model for AC (launch tool 2 in main tool)</td>
</tr>
<tr>
<td>25</td>
<td>Sub-tool to predict IRI using AI-based IRI approach 1 PMIS model for AC (launch tool 3 in main tool)</td>
</tr>
<tr>
<td>26</td>
<td>Sub-tool to predict RUT using AI-based county model for AC (launch tool 1 in main tool)</td>
</tr>
<tr>
<td>27</td>
<td>Sub-tool to predict RUT using AI-based PMIS model for AC (launch tool 2 in main tool)</td>
</tr>
<tr>
<td>28</td>
<td>Sub-tool to predict TCRACK using AI-based county model for AC (launch tool 1 in main tool)</td>
</tr>
</tbody>
</table>
Figure 29. Sub-tool to predict TCRACK using AI-based PMIS model for AC (launch tool 2 in main tool) ...25
Figure 30. Sub-tool to predict LCRACK using AI-based county model for AC (launch tool 1 in main tool) ...25
Figure 31. Sub-tool to predict LCRACK using AI-based PMIS model for AC (launch tool 2 in main tool) ...26
Figure 32. Sub-tool to predict IRI using AI-based IRI approach 1 PMIS model for AC over JPCP (launch tool 1 in main tool) ...26
Figure 33. Sub-tool to predict IRI using AI-based IRI approach 2 PMIS model for AC over JPCP (launch tool 2 in main tool) ...27
Figure 34. Sub-tool to predict RUT using AI-based PMIS model for AC over JPCP27
Figure 35. Sub-tool to predict TCRACK using AI-based PMIS model for AC over JPCP28
Figure 36. Sub-tool to predict LCRACK using AI-based PMIS model for AC over JPCP28
Figure 37. Sub-tool to predict IRI using AI-based county model for PCC overlay29
Figure 38. Sample deterioration model graphs (without data) when clicking various view options in IPAT sub-tools ..33
Figure 39. Sample RSL results when clicking the Calculate Future RSL button in sub-tools38
Figure 40. Select predictive model type: statistics-based model40
Figure 41. Select pavement type: JPCP (concrete) ..41
Figure 42. Select pavement performance indicator and prepare data: IRI (statistics-based model) ...41
Figure 43. Enter required data information: county JPCP (statistics-based model)42
Figure 44. Transfer data information into IPAT sub-tool: JPCP (statistics-based model)42
Figure 45. Enter input parameters: JPCP (statistics-based model)43
Figure 46. Calculate future IRI: JPCP (statistics-based model) ...44
Figure 47. IRI model view: JPCP (statistics-based model) ..44
Figure 48. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): JPCP (statistics-based model) ...45
Figure 49. Threshold limit for IRI (170 in./mi) and design life (40 years): JPCP (statistics-based model) ..46
Figure 50. Threshold limit for IRI (130 in./mi) and design life (40 years): JPCP (statistics-based model) ..47
Figure 51. Select predictive model type: AI-based model ..48
Figure 52. Select pavement type: JPCP (concrete) ..48
Figure 53. Select pavement performance indicator and prepare data: IRI (AI-based model)49
Figure 54. Enter required data information: county JPCP (AI-based model)49
Figure 55. Transfer data information into IPAT sub-tool: JPCP (AI-based model)50
Figure 56. Option 1: Enter existing input parameters and traffic increment per year: JPCP (AI-based model) ..50
Figure 57. Option 2: Enter existing and prepared input parameters without defining traffic increment per year: JPCP (AI-based model) ..51
Figure 58. Option 1: Calculate future IRI: JPCP (AI-based model)51
Figure 59. Option 2: Calculate future IRI: JPCP (AI-based model)52
Figure 60. View IRI model (option 1): JPCP (AI-based model) ...52
Figure 61. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): JPCP (AI-based model) ...53
Figure 62. Threshold limit for IRI (170 in./mi) and design life (40 years): JPCP (AI-based model) ...53
Figure 63. Threshold limit for IRI (130 in./mi), design life (40 years), and present year (2021): JPCP (AI-based model) ...54
Figure 64. Select predictive model type: statistics-based model ...55
Figure 65. Select pavement type: AC (asphalt) ..55
Figure 66. Select pavement performance indicator and preparation of data: IRI (statistics-based model) ...56
Figure 67. Enter required data information: county AC (statistics-based model)56
Figure 68. Transfer data information into IPAT sub-tool: AC (statistics-based model)57
Figure 69. Calculate future IRI: AC (statistics-based model) ..58
Figure 70. Calculate future IRI: AC (statistics-based model) ..59
Figure 71. View IRI model: AC (statistics-based model) ...60
Figure 72. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): AC (statistics-based model) ...61
Figure 73. Threshold limit for IRI (170 in./mi) and design life (40 years): AC (statistics-based model) ...62
Figure 74. Select predictive model type: AI-based model ..63
Figure 75. Select pavement type: AC (asphalt) ..63
Figure 76. Select pavement performance indicator and preparation of data: IRI (AI-based model) ...64
Figure 77. Enter required data information: county AC (AI-based model) ..64
Figure 78. Transfer data information into IPAT sub-tool: AC (AI-based model)65
Figure 79. Option 1: Enter existing input parameters and traffic increment per year: AC (AI-based model) ...65
Figure 80. Option 2: Enter existing and prepared input parameters without defining traffic increment per year: AC (AI-based model) ...66
Figure 81. Option 1: Calculate future IRI: AC (AI-based model) ..66
Figure 82. Option 2: Calculate future IRI: AC (AI-based model) ..67
Figure 83. View IRI model (option 1): AC (AI-based model) ..67
Figure 84. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): AC (AI-based model) ...68
Figure 85. Threshold limit for IRI (170 in./mi) and design life (40 years): AC (AI-based model) ...68
Figure 86. Threshold limit for IRI (125 in./mi), design life (40 years), and present year (2021): AC (AI-based model) ...69
Figure 87. Threshold limit for IRI (200 in./mi), design life (40 years), and present year (2021): AC (AI-based model) ...69
ACKNOWLEDGMENTS

The authors gratefully acknowledge the Iowa Highway Research Board (IHRB) and Iowa County Engineers Association Service Bureau (ICEASB) for supporting this study. The project technical advisory committee (TAC) members from Iowa county engineers, including Lee Bjerke (Winnebago County), Zach Gunsolley (Union County), Todd Kinney (Clinton County), Mark Nahra (Woodbury County), John Riherd (Butler County), Brad Skinner (Appanoose County, previously at Montgomery County), Jacob Thorius (Washington County), and Karen Albert (Montgomery County), are also gratefully acknowledged for their guidance, support, and direction throughout the research. Special thanks to Steve De Vries (ICEASB) and Danny Waid (ICEASB) who developed the original concept of this study and to Brian P. Moore (ICEASB) for guidance, support, and direction throughout the research.

The authors would like to express their sincere gratitude to Mark Murphy from the Iowa Department of Transportation (DOT) Office of Analytics and Ben Hull and Sean Malcolm from Lee County for their full support during the data collection and processing used for developing models and tools. The authors would also like to sincerely thank Yang Zhang, Adel Rezaei Tarahomi, Ikkyun Song, Ethan Ruchotzke, Ryley Radack, and other research team members from Iowa State’s Program for Sustainable Pavement Engineering and Research (PROSPER) at the Institute for Transportation for their assistance during the course of this project.
USING THE IPAT TOOL

The Iowa Pavement Analysis Techniques (IPAT) tool is a Microsoft Excel, macro, and Visual Basic for Applications (VBA)-based automation tool that is comprised of a navigation panel (main tool) and sub-tools. Depending on the version of the operating system, various security warning messages may appear, or the tool may appear in a different font when the tool is first run. The system requirements to run this tool are Excel 2016 and VBA.

Document Scope

This user guide describes a systematic procedure on how to use the IPAT tool that helps local agencies and engineers in their decision-making process by estimating various pavement performance and pavement remaining service life (RSL) under different pavement management levels of service.

Interface of Main Tool

Select Predictive Model Types

The main tool provides users with selections for predictive model types, pavement type, and pavement performance indicators. The main page of the main tool gives users two options to select predictive model types, statistics-based model and artificial intelligence (AI)-based models, as shown in Figure 1.

![Figure 1. Predictive model type selection (main) page of IPAT main tool](image)

Note that the authors recommend the statistics-based model to predict pavement performance and RSL at the project level and AI-based models at the network level, although both approaches can be used for both pavement management levels.
Select Pavement Type

Figure 2 shows the interface of the selection page for pavement type for both statistics- and AI-based approaches.

![Pavement type selection page of IPAT main tool](image)

Figure 2. Pavement type selection page of IPAT main tool

The pavement types include jointed plain concrete pavement (JPCP), asphalt concrete (AC), AC over JPCP, and portland cement concrete (PCC) overlay.

Select Pavement Performance Indicator

Figure 3 shows sample pages of the statistics-based models for selecting pavement performance indicator for (a) JPCP, (b) AC, (c) AC over JPCP, and (d) PCC overlay.
(a) JPCP

(b) AC
The performance indicators for the statistics-based models are the international roughness index (IRI) and pavement condition index (PCI). Figure 4 shows sample pages of the AI-based models for selecting pavement performance indicator for (a) JPCP, (b) AC, (c) AC over JPCP, and (d) PCC overlay.
The performance indicators for AI-based models vary for each pavement type. For JPCP, they are IRI and transverse cracking; for AC and AC over JPCP, they are IRI, rutting, transverse and longitudinal cracking; for PCC overlay, it is IRI. Selecting any pavement performance indicator at each pavement type navigates the user to different questions to check the availability of the required data to launch the sub-tools.
Figure 5 and Figure 6 show sample interfaces for the checking process of the required data to predict IRI before launching the sub-tool for the AC pavement type using statistics- and AI-based models, respectively.

Figure 5. Required data check to launch sub-tool for IRI for statistics-based model for AC pavement type
Figure 6. Required data check to launch sub-tool for IRI for AI-based model for AC pavement type

A detailed process for each pavement performance indicator and pavement type is indicated as a flowchart in Figure 7 through Figure 15.
Figure 7. Flowchart of IPAT tool using statistics-based models for all pavement types
Figure 8. Flowchart of IPAT tool using AI-based models for all pavement types
Figure 9. Flowchart of IPAT tool using AI-based IRI model for JPCP
Figure 10. Flowchart of IPAT tool using AI-based TCRACK model for JPCP
Figure 11. Flowchart of IPAT tool using AI-based IRI model for AC
Figure 12. Flowchart of IPAT tool using AI-based RUT model for AC
Figure 13. Flowchart of IPAT tool using AI-based TCRACK model for AC
Figure 14. Flowchart of IPAT tool using AI-based LCRACK model for AC
Figure 15. Flowchart of IPAT tool using AI-based IRI model for PCC overlay

Interface of Sub-Tools

Enter Inputs

The IPAT sub-tools for each pavement performance indicator and pavement type are launched
by clicking the launch tool in the IPAT main tool. The sub-tool interfaces, which were developed based on the Excel format that includes macros, have the option of statistics- and AI-based models, developed by using the Iowa Department of Transportation’s (DOT’s) Pavement Management Information System (PMIS) database (e.g., PMIS model) and improved by using data from a database from counties (e.g., county model), and are shown in Figure 16–Figure 37.

<table>
<thead>
<tr>
<th>Project Name</th>
<th>COUVAME</th>
<th>PROJECT_NO</th>
<th>IRRU</th>
<th>CPRU</th>
<th>COHRU</th>
<th>DATAVR</th>
<th>IRI (in/mile)</th>
<th>PCI (%)</th>
<th>Age (years)</th>
<th>Predicted IRI (in/mile)</th>
<th>Predicted PCI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate Future IRI</td>
<td></td>
</tr>
<tr>
<td>View IRI Model</td>
<td></td>
</tr>
<tr>
<td>Calculate Future PCI</td>
<td></td>
</tr>
<tr>
<td>View PCI Model</td>
<td></td>
</tr>
<tr>
<td>Calculate RSL Based on IRI</td>
<td></td>
</tr>
<tr>
<td>Calculate RSL Based on PCI</td>
<td></td>
</tr>
</tbody>
</table>

Figure 16. Sub-tool to predict IRI using statistics-based model
Figure 17. Sub-tool to predict IRI using AI-based IRI approach 1 county model for JPCPs (launch tool 1 in main tool)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>COMNAME</th>
<th>PROJECT NO</th>
<th>BPRI</th>
<th>EPRI</th>
<th>CONVR</th>
<th>DATA VR</th>
<th>Accumulated AADTS</th>
<th>PCC Thickness (in)</th>
<th>IRI (m/mile)</th>
<th>IRI (m/mile)</th>
<th>Age (years)</th>
<th>IRI (m/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Threshold Limit for IRI (m/mile)
- Design Life
- Present Year
- Traffic Increment per year (%)

Note: Blue highlighted cells are only for inputs, whereas inputs should be entered to. Green highlighted cells are calculated values (outputs).

Figure 18. Sub-tool to predict IRI using AI-based IRI approach 2 county model for JPCPs (launch tool 2 in main tool)
Figure 19. Sub-tool to predict IRI using AI-based IRI approach 1 PMIS model for JPCPs (launch tool 3 in main tool)

Figure 20. Sub-tool to predict IRI using AI-based IRI approach 2 PMIS model for JPCPs (launch tool 4 in main tool)
Figure 21. Sub-tool to predict TCRACK using AI-based county model for JPCPs (launch tool 1 in main tool)

Figure 22. Sub-tool to predict TCRACK using AI-based PMIS model for JPCPs (launch tool 2 in main tool)
Figure 23. Sub-tool to predict IRI using AI-based IRI approach 1 county model for AC (launch tool 1 in main tool)

Figure 24. Sub-tool to predict IRI using AI-based IRI approach 2 PMIS model for AC (launch tool 2 in main tool)
Figure 25. Sub-tool to predict IRI using AI-based IRI approach 1 PMIS model for AC (launch tool 3 in main tool)

Figure 26. Sub-tool to predict RUT using AI-based county model for AC (launch tool 1 in main tool)
Figure 27. Sub-tool to predict RUT using AI-based PMIS model for AC (launch tool 2 in main tool)

Figure 28. Sub-tool to predict TCRACK using AI-based county model for AC (launch tool 1 in main tool)
Figure 29. Sub-tool to predict TCRACK using AI-based PMIS model for AC (launch tool 2 in main tool)

Figure 30. Sub-tool to predict LCRACK using AI-based county model for AC (launch tool 1 in main tool)
Figure 31. Sub-tool to predict LCRACK using AI-based PMIS model for AC (launch tool 2 in main tool)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>DN</th>
<th>PROJECT_NO</th>
<th>BPRI</th>
<th>IPRI</th>
<th>CONVR</th>
<th>DATAVR</th>
<th>Accumulated FSSAI</th>
<th>HMA Thickness (in.)</th>
<th>LCRACK</th>
<th>LCRACK</th>
<th>LCRACK</th>
<th>LCRACK</th>
<th>Age (years)</th>
<th>LCRACK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Calculate Future LCRACK

View LCRACK Model

Calculate Future RSL

Threshold Limit for LCRACK (% cracking) (0.00)

Design Life (years)

Present Year

Traffic increment per year (%) (2)

Note: Blue-highlighted cells are only for inputs, where inputs should be entered to. Green-highlighted cells are calculated values (outputs).

Figure 32. Sub-tool to predict IRI using AI-based IRI approach 1 PMIS model for AC over JPCP (launch tool 1 in main tool)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>DN</th>
<th>PROJECT_NO</th>
<th>BPRI</th>
<th>IPRI</th>
<th>CONVR</th>
<th>DATAVR</th>
<th>Accumulated FSSAI</th>
<th>HMA Thickness (in.)</th>
<th>IRI</th>
<th>IRI</th>
<th>IRI</th>
<th>IRI</th>
<th>Age (years)</th>
<th>IRI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Calculate Future IRI

View IRI Model

Calculate Future RSL

Threshold Limit for IRI (in/mile)

Design Life

Present Year

Traffic increment per year (%) (2)

Note: Blue-highlighted cells are only for inputs, where inputs should be entered to. Green-highlighted cells are calculated values (outputs).
Figure 33. Sub-tool to predict IRI using AI-based IRI approach 2 PMIS model for AC over JPCP (launch tool 2 in main tool)

Figure 34. Sub-tool to predict RUT using AI-based PMIS model for AC over JPCP
Figure 35. Sub-tool to predict TCRACK using AI-based PMIS model for AC over JPCP

Figure 36. Sub-tool to predict LCRACK using AI-based PMIS model for AC over JPCP
Within all sub-tool interfaces, the yellow cells indicate titles for inputs and outputs, light blue cells indicate that users should enter inputs, green cells indicate predicted outputs, and gray boxes indicate buttons that users should click based on their selections. The user is required to enter and/or edit data for only light blue cells and is not allowed to change yellow and green cells.

The common input parameters for all sub-tools are listed below. The user has the option to enter this road information in the IPAT main tool that will be automatically transferred to the IPAT sub-tools. In the case of not entering the road information in the main tool, the user may enter and/or edit it in sub-tool. The input parameters are as follows:

- Project Name: Descriptions for the road, e.g., street name
- COUNAME: County name
- PROJECT_NO: Number (ID) of the project
- BPRJ: Beginning of the project
- EPRJ: Ending of the project
- CONYR: Year of the construction or reconstruction

The following parameters are the required inputs and the predicted outputs in IPAT sub-tools:

- DATAYR: Year of data collection
- Accumulated AADT: Accumulated annual average daily traffic data that are calculated by adding up current year AADT and previous year AADT
- Accumulated ESAL: Accumulated equivalent single axle load data that are calculated by adding up current year ESAL and previous year ESAL
- Age: Pavement age calculated by subtracting CONYR from DATAYR, in years
- PCC Thickness (in.): Portland cement concrete slab thickness, inch
- HMA Thickness (in.): Hot-mix asphalt concrete slab thickness, inch
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay Thickness (in.)</td>
<td>Portland cement concrete overlay thickness, inch</td>
</tr>
<tr>
<td>PCI (%)</td>
<td>Pavement condition index, 0–100 %</td>
</tr>
<tr>
<td>Predicted PCI (%)</td>
<td>PCI predicted by statistics-based model, in percentage</td>
</tr>
<tr>
<td>IRI_{i-2} (in./mi)</td>
<td>International roughness index two years ago, inch per mile</td>
</tr>
<tr>
<td>IRI_{i-1} (in./mi)</td>
<td>International roughness index one year ago, inch per mile</td>
</tr>
<tr>
<td>IRI_{i} (in./mi)</td>
<td>International roughness index at current year, inch per mile</td>
</tr>
<tr>
<td>Predicted IRI (in./mi)</td>
<td>IRI predicted by statistics-based model, inch per mile</td>
</tr>
<tr>
<td>RUT_{i-2} (in.)</td>
<td>Rutting depth two years ago, inch</td>
</tr>
<tr>
<td>RUT_{i-1} (in.)</td>
<td>Rutting depth one year ago, inch</td>
</tr>
<tr>
<td>RUT_{i} (in.)</td>
<td>Rutting depth at current year, inch</td>
</tr>
<tr>
<td>TCRACKK_{i-2} (count/mi)</td>
<td>Number of transverse cracks/mile two years ago, count per mile</td>
</tr>
<tr>
<td>TCRACKK_{i-1} (count/mi)</td>
<td>Number of transverse cracks/mile one year ago, count per mile</td>
</tr>
<tr>
<td>TCRACKK_{i} (count/mi)</td>
<td>Number of transverse cracks/mile at current year, count per mile</td>
</tr>
<tr>
<td>TCRACKK_{i-2} (%) slab cracked</td>
<td>Transverse cracking two years ago, percent of slab cracked</td>
</tr>
<tr>
<td>TCRACKK_{i-1} (%) slab cracked</td>
<td>Transverse cracking one year ago, percent of slab cracked</td>
</tr>
<tr>
<td>TCRACKK_{i} (%) slab cracked</td>
<td>Transverse cracking at current year, percent of slab cracked</td>
</tr>
<tr>
<td>TCRACKK_{i-2} (ft/mi)</td>
<td>Transverse cracking two years ago, foot per mile</td>
</tr>
<tr>
<td>TCRACKK_{i-1} (ft/mi)</td>
<td>Transverse cracking one year ago, foot per mile</td>
</tr>
<tr>
<td>TCRACKK_{i} (ft/mi)</td>
<td>Transverse cracking at current year, foot per mile</td>
</tr>
<tr>
<td>LCRACKK_{i-2} (ft/mi)</td>
<td>Longitudinal cracking two years ago, foot per mile</td>
</tr>
<tr>
<td>LCRACKK_{i-1} (ft/mi)</td>
<td>Longitudinal cracking one year ago, foot per mile</td>
</tr>
<tr>
<td>LCRACKK_{i} (ft/mi)</td>
<td>Longitudinal cracking at current year, foot per mile</td>
</tr>
<tr>
<td>Joint spacing (ft)</td>
<td>Distance between transverse joints on concrete pavements, foot</td>
</tr>
<tr>
<td>Threshold Limit for PCI (%)</td>
<td>Threshold PCI value representing pavement in poor condition, inch per mile</td>
</tr>
<tr>
<td>Threshold Limit for IRI (in./mi)</td>
<td>Threshold IRI value representing pavement in poor condition, inch per mile</td>
</tr>
<tr>
<td>Threshold Limit for RUT (in.)</td>
<td>Threshold RUT value representing pavement in poor condition, inch</td>
</tr>
<tr>
<td>Threshold Limit for TCRACK (%) slab cracked for JPCP</td>
<td>Threshold TCRACK value representing pavement in poor condition, in percentage</td>
</tr>
<tr>
<td>Threshold Limit for TCRACK (count/mi) for JPCP</td>
<td>Threshold TCRACK value representing pavement in poor condition, count per mile, calculated using the following equation: (% slab cracked/100) × (10 ft of lane width/2 ft of crack width) × (5,280 ft/mi) × (1/10 ft of lane width)</td>
</tr>
<tr>
<td>Threshold Limit for TCRACK (%) cracking for AC and AC over JPCP</td>
<td>Threshold TCRACK value representing pavement in poor condition, in percentage</td>
</tr>
<tr>
<td>Threshold Limit for TCRACK (ft/mi) for AC and AC over JPCP</td>
<td>Threshold TCRACK value representing pavement in poor condition, foot per mile, calculated using the following equation: (% cracking area/100) × (10 ft of lane width/2 ft of crack width) × (5,280 ft/mi)</td>
</tr>
<tr>
<td>Threshold Limit for LCRACK (%) cracking for AC and AC over JPCP</td>
<td>Threshold LCRACK value representing pavement in poor condition, in percentage</td>
</tr>
</tbody>
</table>
• Threshold Limit for LCRACK (ft/mi) for AC and AC over JPCP: Threshold LCRACK value representing pavement in poor condition, foot per mile, calculated using the following equation:
 \[
 \frac{\% \text{ cracking area}}{100} \times \left(\frac{10 \text{ ft of lane width}}{2 \text{ ft of crack width}} \right) \times (5,280 \text{ ft/mi})
 \]
• Design Life: Design life of pavement (e.g., 40 years)
• Present Year: Current year (e.g., 2010)
• Traffic Increment per Year (%): Traffic increment assumption per year to calculate future accumulated traffic data and then to predict future performance, in percentage (e.g., 1%)
• Coefficient Of Determination (R²): Calculated coefficient of determination value (R²) based on comparison of IRI_i and Predicted IRI, 0 to 1 indicating high accuracy in results
• Calculate Future IRI (or PCI, RUT, TCRACK, LCRACK): Button to click to predict future pavement performance indicator
• View IRI (or PCI, RUT, TCRACK, LCRACK) Model: Button to click to view deterioration curve in time by plotting pavement performance indicator versus age
• Calculate RSL Based on IRI (or PCI, RUT, TCRACK, LCRACK): Button to click to calculate RSL based on pavement performance indicator and the following parameters if asked:
 o Threshold Limit for IRI (or PCI, RUT, TCRACK, LCRACK)
 o Design Life
 o Present Year
• Reset: Button to click to reset the analysis and clean the spreadsheet for the next analysis

Predict Pavement Performance

IPAT sub-tools predict pavement performance indicators based on the entered input data, indicate them in numeric value, and plot them in a graph. All green cells indicate the pavement performance predictions. The deterioration model is plotted based on a comparison of the entered field condition and distress data and predicted ones by clicking the View IRI (or PCI, RUT, TCRACK, LCRACK) Model button in the IPAT sub-tool sheets; sample empty graphs are shown in Figure 38. The Go Back button at the top right corner of the graphs should be clicked to return to the input and output sheet.

![Graph of IRI vs. Age](a) IRI
(b) PCI

(c) Rutting

(d) Transverse cracking
(e) Longitudinal cracking

Figure 38. Sample deterioration model graphs (without data) when clicking various view options in IPAT sub-tools

Predict Pavement RSL

IPAT sub-tools predict RSL of pavement sections based on current and future predicted performance indicators. The RSL cannot be estimated without entering inputs and having pavement performance predictions. Clicking the Calculate Future RSL button estimates the RSL of a pavement section based on the following:

- Predicted pavement performance indicator (IRI, PCI, RUT, TCRACK, or LCRACK)
- Threshold limit for IRI (or PCI, RUT, TCRACK, or LCRACK)
- Design life
- Present year

Based on different scenarios with predicted performance and entered threshold values, a large green cell appears under the Calculate Future RSL button. The number seen at the top of the green cell is the RSL year of pavement (e.g., 10 years) and the text seen under the number describes the RSL (e.g., RSL is calculated based on design life). Figure 39 indicates a variety of sample RSL results based on the predicted and given information. Note that these results are for illustration purposes; thus, RSL numbers may not represent real values.
(a) Calculated Future RSL

RSL could not be calculated. Please enter more information!

(b) Calculated Future RSL

IPI predictions do not reach the threshold limit! Thus, RSL could not be calculated. Please enter more information!

(c) Calculated Future RSL

Please enter smaller 'present year' value!
(d)

Calculate Future RSL

Entered IRI already exceeded threshold limit!

(e)

Calculate Future RSL

Entered age already exceeded design service life!

(f)

Calculate Future RSL

3

RSL (at present year) calculated based on the pavement performance
(g) Calculate Future RSL

RSL (at the last entered year) calculated based on the pavement performance

(h) Calculate Future RSL

RSL (at present year) calculated based on the design life

(i) Calculate Future RSL

RSL (at the last entered year) calculated based on the design life
Calculate Future RSL

5

RSL (at present year) calculated based on the design life and pavement performance

(k)

Calculate Future RSL

28

IRI predictions do not reach the threshold limit.
Thus, RSL (at present year) calculated based on the design life!

(l)
Figure 39. Sample RSL results when clicking the Calculate Future RSL button in sub-tools

The RSL results that might be obtained based on various scenarios are as follows:

- **RSL could not be calculated. Please enter more information:** If the user does not enter any threshold limit, design life, and present year data, RSL cannot be calculated (Figure 39a).
- **IRI predictions do not reach the threshold limit! Thus, RSL could not be calculated. Please enter more information!**: If the user enters only threshold limit and the performance predictions never reach the threshold limit, RSL cannot be calculated, and the user needs to enter more data such as design life (Figure 39b).
- **Please enter smaller ‘present year’ value!**: If the user enters all data and the age calculated at the entered present year is larger than the entered design life, RSL cannot be calculated, and the user needs to enter a smaller value for the present year (Figure 39c).
- **Entered IRI already exceeded threshold limit!**: When the user enters threshold limit for pavement condition and distress data that are smaller than the current pavement condition and distress data, pavement performance already exceeds the threshold limit (Figure 39d).
- **Entered age already exceeded design service life!**: When the user enters a design life that is smaller than the current pavement age, the pavement age already exceeds the design life (Figure 39e).
- **RSL (at present year) calculated based on the pavement performance**: When the user enters all data or only threshold limit and present year, RSL is calculated based on the entered present year if the performance predictions reach the threshold limit within the design life (Figure 39f).
- **RSL (at the last entered year) calculated based on the pavement performance**: When the user enters a threshold limit but not the present year, RSL is calculated based on the last entered year in the DATAYR column if the performance predictions reach the threshold limit within the design life (Figure 39g).
- **RSL (at present year) calculated based on the design life**: When the user enters all data or only design life and present year, RSL is calculated based on the entered present year if the pavement age exceeds the design life earlier than the age that the performance predictions reach the threshold limit (Figure 39h).
• **RSL (at the last entered year) calculated based on the design life:** When the user enters design life but not present year, RSL is calculated based on the last entered year in the DATAYR column if the pavement age exceeds the design life earlier than the age that the performance predictions reach the threshold limit (Figure 39i).

• **RSL (at present year) calculated based on the design life and the pavement performance:** When the user enters all data, RSL is calculated based on the entered present year if the pavement age exceeds the design life and the performance predictions reach the threshold limit at the same time (Figure 39j).

• **RSL (at the last entered year) calculated based on the design life and the pavement performance:** When the user enters all data but not present year, RSL is calculated based on the last entered year in the DATAYR column if the pavement age exceeds the design life and the performance predictions reach the threshold limit at the same time (Figure 39k).

• **IRI predictions do not reach the threshold limit! Thus, RSL (at present year) calculated based on the design life!** When the user enters all data, RSL is calculated based on the entered present year if the pavement age exceeds the design life and the performance predictions never reach the threshold limit within the design life (Figure 39l).

• **IRI predictions do not reach the threshold limit! Thus, RSL (at the last entered year) calculated based on the design life!** When the user enters all data but not present year, RSL is calculated based on the last entered year in the DATAYR column if the pavement age exceeds the design life and the performance predictions never reach the threshold limit within the design life (Figure 39m).
ILLUSTRATIVE EXAMPLES: PAVEMENT ANALYSIS USING THE IPAT TOOL

Examples of predicting IRI and RSL for each JPCP and AC pavement type using both statistics-based and AI-based models are examined in the following sections.

JPCP Case: Statistics-Based Model

Select Predictive Model Type

The statistics-based model was selected as shown in Figure 40.

![Select predictive model type: statistics-based model](image)

Select Pavement Type

JPCP (concrete) pavement type was selected as shown in Figure 41.
Figure 41. Select pavement type: JPCP (concrete)

Select Pavement Performance Indicator

IRI, as a pavement performance indicator, was selected, questions are answered (Figure 42) and required road information is entered (Figure 43). Then, the launch tool button is clicked to launch the sub-tool.

Figure 42. Select pavement performance indicator and prepare data: IRI (statistics-based model)
Figure 43. Enter required data information: county JPCP (statistics-based model)

Enter Inputs

The entered data information in the IPAT main tool were transferred into the IPAT sub-tool as shown in Figure 44.

Figure 44. Transfer data information into IPAT sub-tool: JPCP (statistics-based model)
The columns of DATAYR and IRI, were filled based on available data as shown in Figure 45.

Figure 45. Enter input parameters: JPCP (statistics-based model)

Predict Pavement Performance

The Calculate Future IRI button was clicked, and future IRI was predicted (Figure 46).
Figure 46. Calculate future IRI: JPCP (statistics-based model)

Then, the View IRI Model button was clicked, which shows the plotted deterioration curve based on the field and predicted IRI data (Figure 47).

Figure 47. IRI model view: JPCP (statistics-based model)
Predict Pavement RSL

The threshold limit for IRI, design life, and present year parameters were defined, and then the Calculate RSL Based on IRI button was clicked to predict future IRI. The RSL results and descriptions appear under the Calculate RSL Based on IRI button when different scenarios were applied as follows:

- All parameters (170 in./mi, 40 years, 2021) were defined (Figure 48)

![Figure 48. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): JPCP (statistics-based model)](image)

- Threshold limit for IRI (170 in./mi) and design life (40 years) were defined (Figure 49)
Different threshold limit for IRI (130 in./mi) and design life (40 years) were defined (Figure 50)
Figure 50. Threshold limit for IRI (130 in./mi) and design life (40 years): JPCP (statistics-based model)

JPCP Case: AI-Based Model

Select Predictive Model Types

The AI-based model was selected as shown in Figure 51.
Figure 51. Select predictive model type: AI-based model

Select Pavement Type

JPCP (concrete) pavement type was selected as shown in Figure 52.

Figure 52. Select pavement type: JPCP (concrete)
Select Pavement Performance Indicator

IRI, as a pavement performance indicator, was selected, questions are answered (Figure 53) and required road information is entered (Figure 54). Then, the launch tool button is clicked to launch the sub-tool.

Figure 53. Select pavement performance indicator and prepare data: IRI (AI-based model)

Figure 54. Enter required data information: county JPCP (AI-based model)
Enter Inputs

The entered data information in the IPAT main tool was transferred into the IPAT sub-tool as shown in Figure 55.

![Figure 55. Transfer data information into IPAT sub-tool: JPCP (AI-based model)](image)

The columns of DATAYR, Accumulated AADT, PCC Thickness, IRI$_{t-2}$, and IRI$_{t-1}$ were filled based on available data as shown in Figure 56 and Figure 57.

![Figure 56. Option 1: Enter existing input parameters and traffic increment per year: JPCP (AI-based model)](image)
Figure 57. Option 2: Enter existing and prepared input parameters without defining traffic increment per year: JPCP (AI-based model)

Here, there are two options to enter future input parameters: (1) the existing input parameters and defining traffic increment per year (%) to calculate future input parameters (Figure 56), and (2) the existing and prepared future input parameters without defining traffic increment per year (%) (Figure 57).

Predict Pavement Performance

The Calculate Future IRI button was clicked and future IRI was predicted (Figure 58 and Figure 59).

Figure 58. Option 1: Calculate future IRI: JPCP (AI-based model)
Figure 59. Option 2: Calculate future IRI: JPCP (AI-based model)

Then, the View IRI Model button is clicked, which shows the plotted deterioration curve based on the field and predicted IRI data (Figure 60).

Figure 60. View IRI model (option 1): JPCP (AI-based model)
Predict Pavement RSL

The threshold limit for IRI, design life, and present year parameters were defined, and then the Calculate RSL Based on IRI button was clicked to predict future IRI. The RSL results and descriptions appear under the Calculate RSL Based on IRI button when different scenarios were applied as follows:

- All parameters (170 in./mi, 40 years, 2021) were defined (Figure 61)

Figure 61. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): JPCP (AI-based model)

- Threshold limit for IRI (170 in./mi) and design life (40 years) were defined (Figure 62)

Figure 62. Threshold limit for IRI (170 in./mi) and design life (40 years): JPCP (AI-based model)
Different threshold limit for IRI (140 in./mi), design life (40 years), and present year (2021) were defined (Figure 63)

AC Case: Statistics-Based Model

Select Predictive Model Types

The statistics-based model was selected as seen in Figure 64.
Select Pavement Type

AC (asphalt) pavement type was selected as shown in Figure 65.

Figure 64. Select predictive model type: statistics-based model

Figure 65. Select pavement type: AC (asphalt)
Select Pavement Performance Indicator

IRI, as a pavement performance indicator, was selected, questions are answered (Figure 66) and required road information is entered (Figure 67). Then, the launch tool button is clicked to launch the sub-tool.

Figure 66. Select pavement performance indicator and preparation of data: IRI (statistics-based model)

Figure 67. Enter required data information: county AC (statistics-based model)
Enter Inputs

The entered data information in IPAT main tool was transferred into the IPAT sub-tool as shown in Figure 68.

![Figure 68. Transfer data information into IPAT sub-tool: AC (statistics-based model)](image)

The columns of DATAYR and IRI, were filled based on available data as shown in Figure 69.
Figure 69. Calculate future IRI: AC (statistics-based model)

Predict Pavement Performance

The Calculate Future IRI button was clicked and future IRI was predicted (Figure 70).
Then, the View IRI Model button is clicked, which shows the plotted deterioration curve based on the field and predicted IRI data (Figure 71).
Predict Pavement RSL

The threshold limit for IRI, design life, and present year parameters were defined, and then the Calculate RSL Based on IRI button was clicked to predict future IRI. The RSL results and descriptions appear under the Calculate RSL Based on IRI button when different scenarios were applied as follows:

- All parameters (170 in./mi, 40 years, 2021) were defined (Figure 72)
Figure 72. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): AC (statistics-based model)

- Threshold limit for IRI (170 in./mi) and design life (40 years) were defined (Figure 73)
AC Case: AI-Based Model

Select Predictive Model Types

The AI-based model was selected as shown in Figure 74.
Select Pavement Type

AC (asphalt) pavement type was selected as seen in Figure 75.

Figure 74. Select predictive model type: AI-based model

Figure 75. Select pavement type: AC (asphalt)
Select Pavement Performance Indicator

IRI, as a pavement performance indicator, was selected, questions are answered (Figure 76), and required road information is entered (Figure 77). Then, the launch tool button is clicked to launch the sub-tool.

Figure 76. Select pavement performance indicator and preparation of data: IRI (AI-based model)

Figure 77. Enter required data information: county AC (AI-based model)
Enter Inputs

The entered data information in the IPAT main tool was transferred into the IPAT sub-tool as shown in Figure 78.

![Figure 78. Transfer data information into IPAT sub-tool: AC (AI-based model)](image)

The columns of DATAYR, Accumulated AADT, HMA Thickness, IRI\textsubscript{i-2}, and IRI\textsubscript{i-1} were filled based on available data as shown in Figure 79 and Figure 80.

![Figure 79. Option 1: Enter existing input parameters and traffic increment per year: AC (AI-based model)](image)
Figure 80. Option 2: Enter existing and prepared input parameters without defining traffic increment per year: AC (AI-based model)

Here, there are two options to enter future input parameters: (1) the existing input parameters and defining traffic increment per year (%) to calculate future input parameters (Figure 81), and (2) the existing and prepared future input parameters without defining traffic increment per year (%) (Figure 80).

Predict Pavement Performance

The Calculate Future IRI button was clicked and future IRI was predicted (Figure 81 and Figure 82).

Figure 81. Option 1: Calculate future IRI: AC (AI-based model)
Figure 82. Option 2: Calculate future IRI: AC (AI-based model)

Then, the View IRI Model button was clicked, which shows the plotted deterioration curve based on the field and predicted IRI data (Figure 83).

Figure 83. View IRI model (option 1): AC (AI-based model)
Predict Pavement RSL

The threshold limit for IRI, design life, and present year parameters were defined, and then the Calculate RSL Based on IRI button was clicked to predict future IRI. The RSL results and descriptions appear under the Calculate RSL Based on IRI button when different scenarios were applied as follows:

- All parameters (170 in./mi, 40 years, 2021) were defined (Figure 84)

![Figure 84. Threshold limit for IRI (170 in./mi), design life (40 years), and present year (2021): AC (AI-based model)](image)

- Threshold limit for IRI (170 in./mi) and design life (40 years) were defined (Figure 85)

![Figure 85. Threshold limit for IRI (170 in./mi) and design life (40 years): AC (AI-based model)](image)
- Different threshold limit for IRI (125 in./mi), design life (40 years), and present year (2021) were defined (Figure 86)

Figure 86. Threshold limit for IRI (125 in./mi), design life (40 years), and present year (2021): AC (AI-based model)

- Different threshold limit for IRI (200 in./mi), design life (40 years), and present year (2021) were defined (Figure 87)

Figure 87. Threshold limit for IRI (200 in./mi), design life (40 years), and present year (2021): AC (AI-based model)
THE INSTITUTE FOR TRANSPORTATION IS THE FOCAL POINT FOR TRANSPORTATION AT IOWA STATE UNIVERSITY.

InTrans centers and programs perform transportation research and provide technology transfer services for government agencies and private companies;

InTrans contributes to Iowa State University and the College of Engineering’s educational programs for transportation students and provides K–12 outreach; and

InTrans conducts local, regional, and national transportation services and continuing education programs.

Visit InTrans.iastate.edu for color pdfs of this and other research reports.