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tech transfer summary

The researchers developed a systematic, yet transferrable, method 
for estimating key road surface condition variables between road 
weather information system stations using large-scale data and two 
advanced modeling techniques—kriging and deep learning.
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Problem Statement
Estimating road surface condition (RSC) has long been recognized 
as a challenging task, while it is essential in optimizing winter road 
maintenance (WRM) operations.

Background
The monitoring and estimations of RSCs play a critical role in 
optimizing WRM activities. In recent decades, road weather information 
system (RWIS) technologies, both stationary and mobile, have gained 
popularity with many road maintenance authorities and become a 
predominant intelligent transportation system (ITS) technology. While 
RWIS technologies provide real-time and near-future RSC information 
that is critical in making timely maintenance related decisions, RWIS 
technologies are relatively expensive to maintain and operate and are 
therefore only installed at a limited number of locations.

The limited number of RWIS stations along with the need to monitor 
spatially large road networks with vastly varied conditions necessitate 
a strategic and scientific approach to the continuous and accurate 
monitoring of RSCs during inclement weather events. Furthermore, most 
RWIS stations nowadays are equipped with cameras that provide users 
with a direct view of the RSCs; however, the process of classifying RSCs 
using these camera images is still being done manually. If this process can 
be automated, transportation agencies will be able to use the rich image-
based road condition data more effectively and, in turn, improve the level 
of service that they provide.

Goal and Objectives
To tackle the foregoing challenges and provide solutions to better 
serve the public and road authorities, this project aimed to develop a 
methodological framework for estimating winter RSCs and to automate 
the process of image recognition to fill in the spatial gap of unmonitored 
areas using RWIS and other sensing technologies. 

https://aurora-program.org/


Research Description
To evaluate the feasibility and reliability of the proposed 
methods, a case study was conducted by selecting several 
highway segments from Iowa, where a comprehensive 
geodatabase was constructed by incorporating the historical 
observations of RSC variables, weather conditions, and 
vehicle-mounted dash camera images collected by the Iowa 
automated vehicle location (AVL) system from October 
2018 through April 2019, as well as the geographical and 
topographical features of each highway stretch.

As a result, a hybrid geostatistical model, regression kriging 
(RK), was developed by incorporating two conceptually 
different models to map spatial variability and strengthen 
the explanatory power of key RSC variables, which 
included the road surface temperature (RST) and road 
surface index (RSI), representing road slipperiness. 

Semivariogram modeling was also involved in the RK to 
investigate the spatial variations of target variables. In 
total, the researchers developed 228 and 34 semivariogram 
models for RST and RSI, respectively. These two variables 
were also utilized to evaluate the feasibility of RK by 
conducting cross validations. 

A deep learning (DL) model was developed to automate 
the process of RSC image recognition.

As previously mentioned, RSI was one of the RSC 
variables that were used in the development of the RK 
method. It is a friction-like surrogate measure used as a 
numerical indicator for the overall RSC. RSI itself is not 
directly collected at the AVL, but is instead converted from 
the RSC category classified by the trained DL model prior 
to RK interpolation. To make the converted RSI more 
representative, an image thresholding technique was used 
to further adjust the RSI values for images labeled with 
the same RSC category. Converted RSI values were then 
used as input in the RK method for RSI interpolation. 

In addition to estimating RSC variables, it is also 
important to understand the relationship between spatial 
variation patterns of the variables and the underlying 
meteorological factors, which can be used as priori 
knowledge or fingerprints for implementing RK without 
the need to send personnel to collect data before making 
decisions on WRM activities.

The nugget-to-sill ratio (NSR) obtained from the 
semivariogram model of a target variable represents the 
spatial dependence of the variable and, therefore, can be 
used to characterize the spatial dependence of the RSC. 
This NSR value can vary depending on the weather event. 
Based on the literature review and other available data, 
wind and rainfall were used in this study to examine 
potential correlations between RST and wind and rainfall 
weather events. All variables relating to wind and rainfall 
were aggregated into the three NSR classes (i.e., spatial 
dependence classes). Due to the lack of data, an analysis 

pertaining to RST was only included in this portion of 
the analysis.

Finally, the developed solutions were integrated into a 
HyperText Markup Language (HTML) based visualization 
application to demonstrate the robustness of the 
proposed method and the resulting estimations between 
RWIS stations.

Key Findings
Through cross validation, the estimated RSC variables 
(i.e., RST and RSI) using RK showed excellent results, 
confirming the feasibility of the proposed method. With 
as few as one point measurement as input, RK can well 
capture the general patterns of the RSC along a stretch of 
highway. The researchers also found that the estimation 
quality depends on the density of the RWIS network. They 
found that the accuracy of the developed model improves 
when the number of point measurements increases. This 
was further supported by kriging estimation variance, 
where it decreases with the addition of more RWIS 
stations, meaning the reliability of the model’s predictions 
improves with the number of stations. 

Contrary to this pattern, some hourly events showed that 
estimation errors (i.e., RMSE) did not decrease with an 
increased number of input point measurements, which 
can be attributed to different weather events affecting the 
RK interpolation accuracy, as it is not typically uniform 
over space or time. This also suggested that an optimal 
placement strategy for RWIS stations is needed to account 
for both local and regional weather characteristics.

The developed DL model was shown to be highly accurate 
with training and validation accuracies being 99.89% 
and 94.62%, respectively. The confusion matrix, which 
shows the performance of the DL model in terms of both 
false positive and false negative measures, also affirmed 
that the model can successfully distinguish between the 
different RSC categories. The validation accuracy for each 
category was over 90%, suggesting that the DL model is a 
practically applicable approach for determining RSC from 
dash camera images.

However, the researchers found limitations to this DL 
model, in that it is constructed with a relatively simple 
architecture fit only for this project’s specific purpose. 
It was also highly dependent on image quality given 
that images with extraneous elements tend to not be 
accurately classified. 

Furthermore, weather events can be characterized by RST 
using the NSR. Overall, strong wind and heavy rainfall 
tended to create a stronger spatial dependence of RST 
in the study area. This result can help in understanding 
the correlation between the RST variation pattern and 
meteorological factors, which can also be used as priori 
knowledge for a more efficient RK interpolation and 
decision-making process for WRM activities.
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Deep Learning Model Performance

The number of correct and incorrect predictions 
are summarized with normalized values (i.e., 
percentages) and are broken down by each 
category: bare pavement, partially snow covered, 
fully snow covered, and undefined. The values 
in the diagonal line of dark-shaded squares from 
upper left to lower right represent prediction 
accuracy, while the remaining values in the lighter-
shaded squares in each column represent the false 
positive rate (FPR) (where DL predictions are 
positive but they are false/incorrect predictions) and 
the values of each row represent the false negative 
rate (FNR) (where DL predictions are negative but 
they are false/incorrect predictions).

For example, in the first row of the confusion 
matrix, 0.94 means the DL model correctly classified 
94% of new bare pavement images into the bare 
category, but incorrectly classified 0% (0), 5.3% 
(0.053), and 0.26% (0.0026) of them into the other 
three categories, and the summation of these three 
values is called the FNR. For other non-bare images, 
the DL model incorrectly classified 0% (0), 6.9% 
(0.069), and 0% (0) from each category to the Bare 
category, and the summation of these three values is 
called the FPR. High prediction accuracy with a low 
FNR and FPR implies an accurate DL model.

Implementation Readiness and 
Benefits
Using the techniques presented in the final report for this 
project, transportation agencies can expand their RSC 
spatial coverage substantially, enhancing their ability to 
perform WRM activities faster, more efficiently, and more 
cost-effectively, and ultimately provide the general public 
with a greater level of service in terms of winter traffic 
safety and mobility. 

Future Research Recommendations
In terms of future research, it is necessary to expand the 
case study area to cover more highway sections with 
varying orientations (e.g., north-south and east-west 
routes) to further validate the proposed RK method, 
and to better generalize the weather characterization 
results. Additional variables, such as meteorological 
factors, geographical and topographical factors, and traffic 
parameters (e.g., traffic volumes) can be added into the 
analysis to minimize their potential confounding effects 
on the RSC. 

To improve the generalization of RSC image recognition, 
more advanced DL models (e.g., ResNet-50) can be 
adopted to improve RSC image recognition performance. 
In addition, more RSC categories can also be considered 
to further distinguish the differences between road surface 
slipperiness. Other computer vision or image processing 
techniques can also be developed and applied to convert 
each RSC image or RSC category into finer RSI values. 
Furthermore, the development and inclusion of better 
image technology, such as thermal camera overlays, have 
the potential to further improve RSC monitoring and 
estimation results.

Lastly, to better aid the decision-making process for 
WRM activities, the application of the RWIS location 
optimization method can be further extended to 
determine the optimal number of new RWIS stations 
required. Their corresponding optimal locations should 
also be considered by running multiple simulations and 
incorporating various objectives (e.g., traffic monitoring), 
weather events, and specific local attributes.




