Superabsorbent Polymers in Concrete

Peter Taylor, Kejin Wang, Bo Zhou
Internal Curing

• Theory
 • Provide curing water
 • Uniformly
 • When needed
Internal Curing

- Benefits
 - Less cracking
 - Improved durability
Internal Curing

• Benefits
 • Less warping
Internal Curing

• Challenges
 • Stockpiling
 • Moisture control
 • Transport costs
Internal Curing

• Super Absorbent Polymers – the theory
 • Can be batched like an admixture
 • Extra water in mixture is soaked in, to be released later

• But how?
Super Absorbent Polymers

- Lit review
- Lab work
 - SAP Materials Characterization
 - Batching
 - Concrete properties
 - Data Analysis
 - Economic analysis
- Reporting / Implementation
 - Lab report
 - Guide specification
Super Absorbent Polymers

- What defines a good product?
 - Chemistry
 - Absorption
 - Desorption
 - Particle size
 - Stability
Chemistry

- Molecular weight
- Crosslinking density
Absorption

- Amount
- Rate
Absorption

- Amount
- Rate
Desorption

- **Amount**

<table>
<thead>
<tr>
<th></th>
<th>Released</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/g</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Size

- Smaller is better

<table>
<thead>
<tr>
<th>Product</th>
<th>Dry Size, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>Initial absorption rate</td>
<td>Absorption volume</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Min</td>
<td>Min</td>
</tr>
<tr>
<td>94</td>
<td>206</td>
</tr>
<tr>
<td>82</td>
<td>191</td>
</tr>
<tr>
<td>135</td>
<td>334</td>
</tr>
<tr>
<td>168</td>
<td>325</td>
</tr>
<tr>
<td>93</td>
<td>139</td>
</tr>
<tr>
<td>64</td>
<td>154</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>128</td>
<td>218</td>
</tr>
</tbody>
</table>
• Mixture:
 • w/cm = 0.42
 • Target air = 5%
 • 25% fly ash
 • Aggregate combinations to fit Tarantula curve
 • Paste content based on V_r = 175%
 • WRA as needed to get 4” slump w/o SAP
• Investigate batching procedures
 • Calculate amount of SAP needed
 • 7% desorbed water by mass of cementitious
 • Determine water absorbed in 30 minutes
 • Add the extra water to the mixture
 • Batch SAP dry

• Monitor workability loss
• Assess w/cm in hardened concrete
Effects on concrete

Variables:
- Binder type and content
- Design w/cm
- SAP type

Properties
- Fresh properties
- Calorimetry
- Microscopy
- Cracking risk
- PEM properties
Goals

- How to choose an SAP
- How to design the mixture
- How to prepare the mixture
 - Includes effects of variability
- Technical benefits
- LCCA
- Impacts on sustainability