

CENTER FOR TRANSPORTATION RES	SEARC										_	_						4		~		_		_	_		₋₽	_	_ •																									
	Projec		C	ct Schedule																																																		
	FY	201	9				F	Ύ	202	20											FY	20	02:	L										FY	20	22	2									FY	20	23	3					
RESEARCH ACTIVITY	May	July	Aug	Sept	Nov	Dec	Jan	Feb	Mar	Apr	Mav	line	alle	, kinr	Aug	Sept	Oct	Nov	Der	Dec	1 IPr	Feb	Mar	Apr	May	June	ylul	Aug	Sept	Oct	Nov	Dec	100	1101	Mor	NIGI	Apr	INI BY	alinr	hinr	Aug	Sept	Oct	Nov	Dec	 1101	reu Mar	Mar	Apr	May	June	VIN	A 1105	Aug
Task 1: Literature Review			T	M1-	>								+	+	_					+	+		-		_									+		+	+		+	+				-	-			_	_	_	_			_
Task 2: Material Selection and SFRC Mixture Proportioning			-	-				TP	И2 .	1→	•			+						+	1	гм	2.2	→													-							-	-					_	_			_
Task 3: Material Testing Program			-	-								Т	M	3.1	→				-		-	-	-							т	мз	.2-)	>	+		-	-		-	+				-	-									_
Task 4: Numerical Structural Performance Assessment			_	+																											TN	4-)	>				-							-	-				_					
Task 5: Deck Strip Testing Crack Control Performance Evaluation			_	+																	-	-																		TI	M5	⇒		-	-									
Task 6: Full-Scale Bridge Deck Testing Capacity Evaluation			_	_																																					T	M	6→											
Task 7: Guidelines for Design of SFRC Bridge Decks and Material Testing			_																																								ГM	7→ 	,									
Task 8: Project Management																																							F	1,	PS	R,	vo	R→	•				_	_	_			_

ask 2: Materi	al Selection and	I Mixture Proportionin
Material	Types	Sources
Portland cement	• Type I/II	Alamo Type I Cement
Supplementary cementing	Class F fly ash	Oak Grove Class F Fly Ash
materials	Class C fly ash	Jewett Class C Fly Ash
	Condensed silica fume	GCP Silica Fume
Fine Aggregates	River sand	Martin Marietta Webberville Natural
	Reactive river sand	Sand
	Manufactured sand	
Coarse Aggregates	River gravel	Martin Marietta Webberville #57 Stone
	Crushed limestone	
Chemical Admixtures	High-range water reducer	• Sika 2100
	Air-entraining agent	• Sika Air
Fibers	Steel fibers	 Sika Novocon XR Steel Fiber (1.5")
		• Dramix 3D 45/35 Steel Fiber (1.5")
		Helix Steel Fiber (1")

Task 2	er Material	Selecti	on a	and	Mixt	ure F	Prop	ortio	ning
		Fiber dosage		Steel Fi	iber Source	2.0	Class F	Class C	Silica
	Mixture Name	volume)*	Sika	Dramix	Helix	None	(%)	(%)	(%)
ſ	PC-0	0				X			
	PC-0.5	0.5	Х	X	Х				
	PC-1.0	10	v	V	v				
	PC-1.5								
	FA(F)-20-0								
	FA(F)-20-0.5			Mixture	e Designa	tion			
	FA(F)-20-1.0				0				
w/cm=0.45	FA(F)-20-1.5			FA	(F)-20-1.5				
W/CIII=0.43	FA(C)-35-0	C			(.)		Eller Dee		
	FA(C)-35-0.5	Cementitiou	is Systen	n - SCIVI Re	eplacemer	nt Amount ·	- Fiber Dos	age %	
	FA(C)-35-1.0								
	FA(C)-35-1.5	1.5	х					35	
	FA(C)-30-SF-5-0	0				X		30	5
	FA(C)-30-SF-5-0.5	0.5	х					30	5
	FA(C)-30-SF-5-1.0	1.0	Х		Х			30	5
	FA(C)-30-SF-5-1.5	1.5	Х					30	5
	* 1 percent by volu	ne = 130 lbs/yd	3						
						COL	LABORATE	. INNOVATE	. EDUCATE

The UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH	3. Material	Testing Program
Idan		
	Fresh Prop	perties
Fresh Property	Test Method	Notes/Comments
Air content	ASTM C 231	Tested on fresh concrete
Unit weight	ASTM C 138	Tested on fresh concrete
Slump	ASTM C 143	Tested on fresh concrete
Slump flow	ASTM C 1611	For high-slump or SCC types of SFRC.
Bleeding	ASTM C 23	
Temperature	ASTM C 1064	For QC testing and for use in maturity testing in lab and field.
Setting time	ASTM C 403	
Heat of Hydration	Isothermal and semi- adiabatic calorimetry	Isothermal calorimetry at 40, 73, and 100 °F Semi-adiabatic calorimetry at 73 °F for 10 days.
	10/##	COLLABORATE, INNOVATE, EDUCAT

						Fiber dosage (% by	Slump	Air Content	Fresh Temperature
					Mixture Name	volume)*	(in.)	(%)	(F)
	Fiber				PC-0	0	5	2.2	72.6
	dosage		Air	Fresh	PC-0.5 (D)	0.5	4.5	1.8	73.4
	(% by	Slump	Content	Temperature	PC-1.0 (D)	1.0	5.5	2.3	73.6
Mixture Name	volume)*	(in.)	(%)	(F)	PC-1.5 (D)	1.5	5	2.1	74.0
PC-0	0	5	2.2	72.6	FA(F)-20-0	0	6.5	2.4	71.8
PC-0.5 (S)	0.5	4.5	2.1	73.1	FA(F)-20-1.0 (D)	1.0	4	1.6	72.3
PC-1.0 (S)	1.0	5	2.2	72.2	FA(C)-35-0	0	5.5	2.3	72.2
PC-1.5 (S)	1.5	4.5	1.9	72.2	FA(C)-35-0.5 (D)	0.5	4.5	2.1	71.8
FA(F)-20-0	0	6.5	2.4	71.8	FA(C)-35-1.0 (D)	1.0	5	2.3	72.0
FA(F)-20-0.5 (S)	0.5	6.5	1.8	71.4		Fiber dosage		Air	Fresh
FA(F)-20-1.0 (S)	1.0	5.5	1.8	72.8		(% hy	Slump	Contont	Tomporature
FA(F)-20-1.5 (S)	1.5	6	2.2	73.1		(/0 Uy	(in)		
FA(C)-35-0	0	5.5	2.3	72.2		volume)	(in.)	(%)	(F) 72.6
FA(C)-35-0.5 (S)	0.5	6	1.8	72.3		0	65	2.2	72.0
FA(C)-35-1.0 (S)	1.0	4.5	2.1	72.2	PC-0.5 (H)	0.5	0.5	2.1	72.8
FA(C)-35-1.5 (S)	1.5	6.5	1.9	71.9	PC-1.0 (H)	1.0	/	1.7	73.2
FA(C)-30-SF-5-0	0	6	2.1	71.8	PC-1.5 (H)	1.5	5.5	2	71
FA(C)-30-SF-5-0.5 (S)	0.5	4.5	2.4	72.2	FA(F)-20-0	0	0.5	2.4	/1.8
FA(C)-30-SF-5-1.0 (S)	1.0	4	2.2	73.2	FA(F)-20-1.0 (H)	1.0		22	72.2
FA(C)-30-SF-5-1.5 (S)	1.5	5	2.3	72.5	FA(C)-35-0	0	5.5	2.3	12.2
					FA(C) 20 SE E 0	1.0	6	2.1	71.0
					FA(C)-30-SF-5-0	0	1 0	Z.1	1 /1.8

Task	3: Material	Testing Program
Hardened Property	Test Method	Notes/Comments
Compressive strength	ASTM C 39	Tested at 1, 7, 28, and 91 days
Tensile strength	ASTM C 496	Tested at 1, 7, 28, and 91 days
Flexural strength	ASTM C 78	Tested at 7 and 91 days
Flexural toughness	ASTM C 1399 ASTM C 1609	Tested at 91 days (only for selected mixtures) Tested at 91 days
Elastic modulus	ASTM C 469	Tested at 7 and 91 days
Thermal expansion (CTE) 7	Гех-428-А	Tested at 28 days
Drying shrinkage	ASTM C 157	Six-months drying after 7-10 day moist curing
Autogenous shrinkage l f	Unrestrained shrinkage Frame	Measured for 7-10 days
Electrical resistivity	ASTM C 1202	To be performed for selected SFRC mixtures, with and without fibers sieved out of mixture.
Maturity A	ASTM C 918	Maturity parameters will be calculated for select SFRC mixtures – this allows for in-situ strength, stress prediction, and cracking potential using ConcreteWorks.

THE UNIVERSITY OF TEXAS AT AUSTIN EMIEMPON TRANSPORTATION RESEARCH Task 3: Material Testing	g Program ((Direct	Tensile	Test)
	Specimen ID/	Direct te	nsion test	
	Description	f'_t [ksi]	f_{res}^t [ksi]	
	L-PC-8	-	_	
	L-D1-18	0.545	0.148	
	L-S1-18	0.439	0.091	
	L-H1-18	0.467	0.118	
	L-S1-0	0.516	0.094	
	T-PC-9	-	-	
	T-D1-18	0.524	0.099	
	T-D15-18	0.471	0.163	
	T-S1-18	0.487	0.162	
	T-D1-0	-	-	
		co	LLABORATE. IN	NOVATE. EDUCATE

ITY OF TEXAS AT AUSTIN							
Flex	ural To	ughnes	s Testing	, (ASTM	C1609)		
				, (, , , , , , , , , , , , , , , , , ,	•=•••		
Mixture ID (Fiber) -							
Sample	f1	fp	f600	f150	Toughness	f ^d , 150	R ^D T 150
PC-1.0 (Dramix) - A	3555	I.	2600	2180	256	2400	0.68
PC-1.0 (Sika) - A	3150		1490	1175	91	860	0.27
PC-1.5 (Dramix) - A	3600	3940	3500	2300	317	2970	0.83
PC-1.5 (Dramix) - B	3470		2620	1830	168	1580	0.45
(F)-20-1.0 (Dramix) - A	3410	3515	2890	1790	165	1550	0.45
(C)-35-0.5 (Dramix) - A	3975		2050	1580	208	1960	0.49
A(C)-35-1.0 (Sika) - A	2490	2490	2330	1410	207	1950	0.78
FA(C)-35-1.0 (Sika) - B	3040		1790	1120	102	960	0.32
A(C)-35-1.0 (Dramix) - A	3700		2680	1900	153	1440	0.39
A(C)-30-SE-5-1.5 (Sika)	3460		3035	1790	256	2405	0.69

Durability Property	Test Method	Notes/Comments
Alkali-silica reaction	ASTM C 1260/1567 ASTM C 1293 Outdoor exposure blocks	The concrete prism test shall be run for 24 months; The accelerated mortar bar test shall be run for 28 days. 15" x 15" exposure blocks to be stored at UT outdoor site.
Chloride-induced corrosion	ASTM G 109 ASTM C 1556 Marine exposure blocks	Half-cell potential measured as indicator of corrosion likelihood. Chloride diffusion coefficients shall be measured for SFRC. Reinforced exposure beams composed of SFRC shall be exposed to the Gulf of Mexico at UT MSI Exposure Site.
Carbonation-induced corrosion	Accelerated carbonation (4% CO ₂) Outdoor carbonation (sheltered and unsheltered)	A computer-controlled accelerated carbonation chamber shall be used to evaluate the rate of carbonation of SFRC mixtures. Select SFRC mixtures shall be subjected to outdoor exposure in both a sheltered (Stevenson screen) and unsheltered manner.
Freezing and Thawing	ASTM C 666	Frost resistance shall be evaluated using ASTM C 666, using NDT evaluation to estimate dynamic modulus and durability factor.
Salt Scaling	ASTM C 672	Select SFRC mixtures will be exposed to NaCl, MgCl, or brine solution.
Plastic shrinkage cracking	ASTM C 1579	Select SFRC mixtures will be evaluated for plastic shrinkage cracking; SFRC with and/without 1 pcy of synthetic monofilament microfibers)
Restrained shrinkage cracking	Rigid cracking frame, tested in parallel with free shrinkage frame	Select SFRC mixtures will be subjected to time-temperature based on ConcreteWorks prediction of heat generation for SFRC used in bridge decks.
Impact resistance	ACI 544 drop weight method	Measured at 28 days
Polish resistance	Wheel polishing device	Measured at 28 days (selected mixtures)

18

COLLABORATE. INNOVATE. EDUCATE

COLLABORATE, INNOVATE, EDUCA

CTR THE UNIVERSITY OF TEXAS AT AUSTIN

Task 5: SFRC CIP-PCP Slab Strips test

Longitudinal direction specimen

Longitudinal direction specimens, indicated by an 'L' for specimen ID, have dimensions 8.5 in. x 8 ft. x 16ft.-7in. and have transverse panel direction that incorporates prestressing through strands. In addition, the panel joint replicates the girder line with bedding strips.

Transverse direction specimen

Transverse specimens, denoted by a 'T' for specimen ID, are 8.5 in. x 8ft. x 16ft.-1in. and have longitudinal panel direction that has welded wire reinforcement. In addition, the panel joint for the transverse specimen accommodates 1 in. gap between panels.

Existing TxDOT top mat reinforcement details were tested to compare the structural cracking performance of SFRC bridge decks built with various top mat details and SFRC mix designs. Standard detail requires #4 standard reinforcing bars spaced 9 in. (0.27 sq. in./ft.) for longitudinal and transverse directions. Specimens with SFRC differ in fiber types and reinforcement ratios.

Snecimen ID	Direction	Eihor type		
Specimento	Birection	Ther type	fraction	layout
L-PC-9	Longitudinal	Plain concrete	-	#4@9"
L-D1-18	Longitudinal	Dramix 3D	1%	#4@18"
L-S1-18	Longitudinal	Sika Novocon	1%	#4@18"
L-H1-18	Longitudinal	Helix	1%	#4@18"
L-S1-0	Longitudinal	Sika Novocon	1%	None
T-PC-9	Transverse	Plain concrete	-	#4@9"
T-D1-18	Transverse	Dramix 3D	1%	#4@18"
T-D15-18	Transverse	Dramix 3D	1.5%	#4@18"
T-S1-18	Transverse	Sika Novocon	1%	#4@18"
T-D1-0	Transverse	Dramix 3D	1%	None
				COLLABORATE. II

COLLABORATE. INNOVATE. EDUCA

THE UNIVERSITY OF TEXAS AT AUSTIN

Summary

- 1. Comprehensive materials and structural testing of SFRC used in bridge decks is in progress.
- 2. Results are overall quite encouraging, with preliminary findings suggesting that half of the steel in the cast-in-place deck section can be removed when using ~1% steel fibers.
- 3. Final conclusions are pending completion of full-scale structural testing and long-term durability evaluations.

COLLADORATE. NNOVATE, EDUCATE

Specimen	SFRC	Ec [ksi]	f'c [ksi]	fcr [ksi]	fr [ksi]
S1-2	Dramix 1%	4309	6.2	0.572	0.21
S1-3	Sika 1%	3814	5.3	0.531	0.12
S1-4	Helix 1%	3886	5.7	0.549	0.25
\$1-5	Sika 1%	5157	6.9	0.607	0.12
S2-2	Dramix 1%	4443	6.3	0.576	0.2
S2-3	Dramix 1.5%	4197	5.5	0.541	0.22
S2-4	Sika 1%	4718	6.1	0.567	0.14

