

COLLEGE OF ENGINEERING School of Civil and Construction Engineering

Precision and Bias Testing Electrical Resistivity and Formation Factor

September 27th – National Concrete Consortium

Siva Chopperla, Burkan Isgor, and Jason Weiss, Edwards Distinguished Professor, Oregon State University NATIONAL CONCRETE CONSORTIUM

Jason.Weiss@oregonstate.edu

Jason.Weiss@oregonstate.edu

- A large part of good concreting is doing what we already know
- We can control the capillary pores by controlling the w/c (SCM and WRA good)
- Excess water leads to pores and increased transport
- 'Low Hanging Fruit' all can reach
- Lower w/c general move in right direction

THINKES THAT	THINKS YOU
MATTER	CONTROL)
1	
WHAT YOU SHOULD	Fours ON

Concrete Durability FHWA – PEM Effort

- AASHTO R101
 - Transport (and Corrosion): Resistivity/F Factor
 - Freeze-Thaw Durability:
 Critical Saturation Approach
 - Freeze-Thaw Durabilitiy: (SAM)
 - Calcium Oxychloride Reactivity
 - Shrinkage Cracking Dual Ring
 - Workability V Kelly
 - Workability Box

Quality Assurance and Quality Control

- Measurements during construction
- Owner: Is this the same mixture we qualified?
- Producer: Is this the mixture we want to produce?
- Test with good repeatability
- Easy tests allow for large sample size, statistical information as well

A Few Issues (Fixable)

- Improper correction for geometry
- Not accounting for temperature
- Drift, cable damage, or improper size
- Importance and implication of sample
 - curing allowing microstructure in the sample to fully form/hydrate
 - conditioning allowing the pore solution to be well known
- Standards need to be followed for
 - accurate results
 - correct data interpretation

$$\rho = R_{\text{cylinder}} \left(\frac{A}{L}\right) \qquad \qquad \rho = \frac{R}{2\pi a}^* (\mathsf{f}_{\text{confinement}})$$

Oregon State University

College of Engineering

Frank was not a specification follower

A lot done on resistivity over the last century

- However, in many ways we are not considering what is known
- Are we too busy as this comic suggests
- Do we need to learn it for ourselves
- We are missing some basics that will hinder us in the long run
- Example reports and calls Jason.Weiss@oregonstate.edu

A Few Issues (Fixable)

- Improper correction for geometry
- Not accounting for temperature
- Drift, cable damage, or improper size
- Importance and implication of sample
 - curing allowing microstructure in the sample to fully form/hydrate
 - conditioning allowing the pore solution to be well known
- Standards need to be followed for
 - accurate results
 - correct data interpretation

Keep Encouraging Training

Current AASHTO standards need precision and bias statements that follow the standards and are conditioned per standard

P&B study

- Several round robin tests have been conducted (Spragg et al.2012)
 - Single-operator COV = 4.4 % (Bulk), 4.3% (Surface)
 - Multi laboratory COV = 13.2 % (Bulk), 11.5% (Surface)
 - Curing/conditioning a key issue

Precision and Bias

- Bias "the difference between a population mean of the measurements or test results and an accepted reference or true value" (Bainbridge 1985).
- Precision is the "spread of the data ... attributable to the statistical variability present in the sample" (Debanne 2000).

• Bias and precision combine to define the performance of an estimator.

Overall Study Approach

- To provide precision and bias data for AASHTO TP119 and AASTHO T358
- Phase A: Identify participating labs and sample preparation for Phase C (1 month)
- Phase B: Develop and deliver training tools (2 months)
- Phase C: Controlled Curing to Isolate Testing Operator and Testing Equipment Variation (4 months)
- Phase D: Curing in Participating Laboratories to Include Curing Variation (5 Months)

Resistivity Testing

THERE IS NO PLACE LIKE HOME

Will be done at your home labs

Goal is to have trainings and then evaluations

Special physical testing tools

Phase A Participating Labs and Sample Prep

- Link to fill in the participation form <u>https://forms.gle/qTUHR8cgZuFhfKu17</u>
- We need to know the labs that will be involved in testing
- 10 resistivity calibration devices are ready, shipped in October. (More can be made if desired)
- Concrete samples need to be cast but we need to know how many samples are being made and where they are going

Resistivity Precision & Bias Study Participation

Please submit this form if you are interested to join the precision and bias study for the resistivity testing. For any questions, email krishna.chopperla@oregonstate.edu

Weissw@oregonstate.edu (not shared) Switch account

*	R	e	a	u	ir	e
		~	ч	-		~

Your answer	
Contact Name *	
Your answer	
Contact Information (Email) *	
Your answer	

 \odot

Phase B – Training Tools

Phase B – Training Tools

Develop and deliver training tools

- A video as the training tool for performing the test
- A video/webinar factors that impact testing
- Calibration cell to make sure folks are doing this correctly
- Worksheet to enter the data will be shared with the participating laboratories
- Test of knowledge at the end

Phase C – Test Equipment, Operator, Well Cured Sample

• After online webinar

- Review AASHTO TP119/358
- Testing the calibration cell
- Mature (56d) samples will be sent to the labs (to minimize curing variation)
- 2 mixtures bridge deck and pavement
- Results from the labs will be compared to OSU results
- Results will be compared with other testing labs
- Determining
 - identifies equipment variation
 - Identifies operator variation
 - Identifies pooled variation when curing is not varied

Phase D – Varied Sample Curing and Conditioning

Curing in Participating Laboratories to Include Curing Variation

- Prepared samples will be sent at an early age (36-72 hours)
- Curing and conditioning (ask you to return solutions)
 - Option A 5-gal bucket with simulated pore solution
 7.6 g/L NaOH (0.19 M); 10.64 g/L KOH (0.19 M); 2 g/L Ca(OH)₂.
 - Option B Seal cured
 - Option D Lime water bath
- A precision statement
 - for the testing equipment and operator
 - curing and conditioning

Output from the study

AASHTO TP 119 (T358)

- precision and bias statement
- help consideration as a full test standard
- any final modifications to the provisional standard

Total Variation Variation Production Variation Testing Variation **Production Variation**

Helps to set specification limits that are

realistic and capture production variation

Calibration Samples

- In 2008 we stated that calibration/reference devices were needed
- Some suppliers have made some items but we needed to develop the calibration cell at OSU to verify the equipment is setup correctly
- Specifically:
 - Correct sponges and the solution used
 - Electrical connections are not faulty

• Real examples of issues

Calibration Samples

Known Materials (low)

- Tested known sample
- Actual Impedance 589 ohms

Jason.Weiss@oregonstate.edu

Known Materials (high)

Jason.Weiss@oregonstate.edu

Sep 27, 2022

Jason.Weiss@oregonstate.edu

consistent measurements

in resistivity measurement • Effect of using defective wires

Effect of conductive solution for sponges • Using DI water instead of conductive solution (simulated

• Thickness: 0.55", 0.35", 0.04"

Using sponges thicker than 0.35" can cause > 4% change in measured resistivity (typically 1%)

pore solution or lime water) can cause up to 8% increase

Can cause fluctuations in measurements and effect the

• Effect of using different sponges (Corrected)

Resistivity calibration device

Sep 27, 2022

- Concrete Quality related to water content and connectivity of pores
- Resistivity (Formation Factor) related to water content and connectivity of pores
- PEM Enabled different groups to become familiar with resistivity
- Now that we are familiar there is an opportunity to tighten up how we are testing – education and verification
- Huge value in proper calibration cells
- We will conduct a precision and bias study Looking for testing labs

Fresh Concrete Study

- Travel to Iowa
 - SAM testing
 - V- Kelly Testing
 - Box Testing

https://www.roadsbridges.com/concrete/article/10648919/stop-being-premature

Phase A Participating Labs and Sample Prep

• Link to fill in the participation form <u>https://forms.gle/qTUHR8cgZuFhfKu17</u>

Jason.Weiss@oregonstate.edu krishna.chopperla@oregonstate.edu

Resistivity Precision & Bias Study Participation

Please submit this form if you are interested to join the precision and bias study for the resistivity testing. For any questions, email krishna.chopperla@oregonstate.edu

resisting resting, for any questions, sman answerspheria (a singler	orare.eau
weissw@oregonstate.edu (not shared) Switch account * Required	٢
Agency or Laboratory Name *	
Your answer	
Contact Name *	
Your answer	
Contact Information (Email) *	
Your answer	
Submit	Clear form