Towards an Improved National Approach to Preventing Alkali-Aggregate Reactions (ASTM C1778/AASHTO R80)

Kevin J. Folliard¹, Thano Drimalas¹, Jason Ideker², Benoit Fournier³, and Michael D.A. Thomas⁴

¹ The University of Texas at Austin
 ² Oregon State University
 ³ Laval University
 ⁴ University of New Brunswick

Spring 2023 National Concrete Consortium Savannah, GA April 12, 2023

Reaction between the cement (Na, K & OH⁻) and unstable silica, SiO₂, in some types of aggregate.

The reaction produces an alkali-silica gel, which absorbs water from the surrounding paste ...

... and expands.

The internal expansion eventually leads to cracking of the surrounding concrete.

It all started with	The Contraction
	 Deals with AAR – in other words ASR & ACR Based on CSA approach (with significant revisions)
Report on Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction	 Prescriptive & performance alternatives Allows the use of (alkali-silica) reactive aggregates with the following preventive measures: Limiting the alkali content of the
Thomas, Fournier & Folliard, 2008 Federal Highways Administration, FHWA-HIF-09-001	 concrete Use of SCM including (ternary blends) Use of lithium The actual level of prevention varies with "risk" as defined by: Reactivity of the aggregate Nature of the structure (design life & consequences of ASR) Exposure condition

Concrete Prism Test (CPT) – ASTM C1293

708 lb/yd³ (420 kg/m³) cementitious material

NaOH added to yield 1.25% Na₂O_e by mass of Portland cement

 $0.42 \leq W/CM \leq 0.45$

Concrete prisms 3 x 3 x 10 (min.) inch (75 x 75 x 250 mm)

Stored over water at 100°F (38°C) (and nominally 100% RH) for 1 year to test aggregates or 2 years to test preventive measures

Prescriptive Approach							
Ster Deter aggre reac	p 1 mine egate tivity Table 1	Step 2 ermine Risk of ASR Classification of A	3 Ste be Level Deter classific struc Aggregate Re	p 4 Ste mine Se ation of ture meas activity	ep 5 lect entive sure(s)		
	Aggregate- Reactivity Class	Description of aggregate reactivity	One-Year Expansion in CPT (%)	14-day Expansion in AMBT (%)			
	R0	Non-reactive	< 0.040	≤ 0.10			
	R1	Moderately reactive	0.040 - 0.120	> 0.10, ≤ 0.30			
	R2	Highly reactive	0.120 - 0.240	> 0.30, ≤ 0.45			
	R3	Very highly reactive	> 0.240	> 0.45			
	CPT ASTM C1293;						
	AMBT ASTM C1260; AASHTO T 303						
	If CPT and AMBT results are available – CPT results govern						

Prescriptive Approach							
Step Determ aggreg reactiv	1 Step 2 Determine Risk of ASR	Step Determin of Preve	o 3 ne Level ention	Step 4 Determin classificatio structure	n of	Step 5 Select preventive measure(s)	
	Size and experies	lining the LA		Pactivity Class	<u> </u>	7	
	conditions	, R0	R1	R2	R3	_	
	Non-massive ¹ concrete in a dry ² environment		Level 1	Level 2	Level 3		
	Massive ¹ elements in a dry ² environment	Level 1	Level 2	Level 3	Level 4		
	All concrete exposed to humid air, buried or immersed		Level 3	Level 4	Level 5		
	All concrete exposed to alkalis in service ³	Level 1	Level 4	Level 5	Level 6		
	¹ A massive element has a least dimensi ² A dry environment corresponds to an found in buildings ³ Examples of structures exposed to alk highway structures exposed to deicing formate, etc.)	on > 3 ft (0.9 m) average ambient r alis in service incl salts (e.g. NaCl) o	elative humidity l ude marine struct r anti-icing salts (ower than 60%, nor ures exposed to sea e.g. potassium acet	rmally only water and ate, sodium		

Prescriptive Approach						
Step 1 Determi aggrega reactivi	ne Dete te ty Table 3	Step 2 rmine Risk of ASR	Step 3 Determine Le of Prevention	evel De class st	Step 4 termine ification of ructure	Step 5 Select preventive measure(s)
	Level of ASR Risk	CI	assification of s	Structure (Tab	le 4)	
	(Table 2)	S1	S2	S3	S4	
	Risk Level 1	V	V	V	V	
	Risk Level 2	V	V	W	Х	
	Risk Level 3	V	W	Х	Y	
	Risk Level 4	W	Х	Y	Z	
	Risk Level 5	Х	Y	Z	ZZ	
	Risk Level 6	Y	Z	ZZ	++	
			~ ~ ~			_
	ASR is Level 6.1 circumstances.	ted to construct Measures must	a Class S4 structu be taken to reduce	re (see Table 1) the level of risk	when the risk of in these	

Step : Determ aggrega reactiv	1 Step 2 ine Determine Risk Determine Risk of ASR	Step 3 St Determine Level Determine Classific of Prevention Structure	ep 4 ermine cation of icture Step 5 Select preventive measure(s)
Class	(Modified for Highwa Consequence of ASB	ay Structures from RILEM TC 191-A	RP)
Class SC1	Safety, economic, or environmental consequences small or negligible	Some deterioration from ASR may be tolerated	Non-load-bearing elements inside building Concrete elements not exposed to moistur Temporary structures (service life < 5 year
Class SC2	Some safety, economic, or environmental consequences if major deterioration	Moderate risk of ASR is acceptable	Sidewalks, curbs, and gutters Elements with service life < 40 years
Class SC3	Significant safety, economic, or environmental consequences if minor damage	Minor risk of ASR may be acceptable	Pavements Foundations elements Retaining walls Culverts Highway barriers Rural, low-volume roads Precast elements in which economic cost replacement are severe Service life normally 40 to 74 years
Class SC4	Serious safety, economic, or environmental consequences if minor damage	ASR cannot be tolerated	Major bridges Power plants Dams Nuclear facilities Water treatment facilities Tunnels Critical elements that are very difficult to inspect or repair

Prescriptive	e Approach	e le	Carlor -	
Step 1 Determine aggregate reactivity	Step 2 Determine Ris of ASR	Step 3 Determine Level of Prevention	Step 4 Determine classification of structure	Step 5 Select preventive measure(s)
Option 1	Table 5 Maximu Pro	um Alkali Contents (from wide Various Levels of Pro	Portland Cement) to evention	
	Prevention	Maximum alkali col (Na ₂ C	ntent of concrete De)	
	Level	lb/yd ³	kg/m³	
	V	No lir	nit	
	W	5.0	3.0	
	X	4.0	2.4	
	Y	3.0	1.8	
	Z	Table	28	
	ZZ	Table	50	

Prescriptive Approach								
Step 1 Determine aggregate reactivity	Si Detern of	ep 2 nine Risk ASR	St Determ of Pre	ep 3 nine Level evention	S Det classi str	tep 4 termine fication of ucture	f Preventi	Step 5 Select eventive asure(s)
option 2		Alkali level of	Minimum Replacement Level (% by mass)					
	Type of SCM	SCM (% Na ₂ Oe)	Level W	Level X	Level Y	Level Z	Level ZZ	
	Fly ash	< 3.0	15	20	25	35		
	(CaO ≤ 18%)	3.0 – 4.5	20	25	30	40		
	Slag Cement	< 1.0	25	35	50	65	Table 8	
	Silica Fume⁺ (SiO ₂ > 85%)	< 1.0	1.2 x LBA or 2.0 x KGA	1.5 x LBA or 2.5 x KGA	1.8 x LBA or 3.0 x KGA	2.4 x LBA or 4.0 x KGA		
[†] The minimum level of silica fume (as a percentage of cementing material) is calculated on the basis of the alkali (Na ₂ Oe) content of the concrete contributed by the portland cement and expressed in either units of lb/yd ³ (LBA in Table 6) or kg/m ³ (KGA in Table 6).								

Prescriptive A	pproach	The second second	
Step 1 Determine aggregate reactivity	Step 2 Determine Risk of ASR	Step 3 Step 4 Determine f Prevention SCM Level Based on Cement	Step 5 Select reventive easure(s)
Option 2	Cement Alkalis (% Na ₂ Oe)	Level of SCM	
	< 0.70	Reduce the minimum amount of SCM given in Table 6 by one prevention level	
	0.70 to 1.00	Use minimum SCM levels in Table 6	
	> 1.00 to 1.25	Increase the minimum amount of SCM given in Table 6 by one prevention level	
	> 1.25	No guidance is given	

- 1. The concrete prism test has been found to be very reliable in assessing aggregate reactivity (1-yr, 0.04% expansion).
- 2. The 2-year concrete prism test has been found to underestimate the dosage of SCM (or lithium nitrate) needed to control ASR-induced expansion, based on correlation with high-alkali exposure blocks.
- 3. Based on the preliminary findings from NCHRP 10-103, revisions are recommended to ASTM C1778/AASHTO R80, as described next.

NCHRP 10-103 – PRELIMINARY FINDINGS

- 1. ASTM C1293 is still recommended for evaluating aggregate reactivity but NOT to evaluate preventive measures.
- 2. AASHTO T380 is recommended to evaluate aggregate reactivity or preventive measures (56 and 84 day expansion limits, respectively).
- 3. ASTM C1567, once properly benchmarked against ASTM C1293 or AASHTO T380 for a given aggregate, can be used to determine SCM dosage using a 28-day expansion limit of 0.10 percent.
- 4. Natural pozzolans should be included both in the performance and prescriptive-based approaches.
- 5. The SCM dosages previously recommended should be increased to better correlate with exposure blocks.
- 6. A combination of SCMs and cement alkali loading limits are recommended for critical structures.
- 7. All of these recommendations may change as the data from the 450 exposure blocks emerges.

