1P and 1T Cements: What’s next and what follows PLC?

Rob Shogren – MBA, PE, Ph.D.

Type IL, IP and IT Cements – What’s Next?

IL - In the PNW Market since 2017, having looked back
Why have other markets had issues?

IT Cements – IT(L)(S), IT(L)(P)
What is missing? IQ……..

This is almost old news so WHAT IS NEXT?
Projected General Cementitious Supply/Demand

- Theoretical cementitious demand to outstrip theoretical supply (current sources) by 2024 due to planned coal powerplant closures or fuel changes. No declining slag availability in the PNW anticipated.

Current SCMs

- Slag
- Fly Ash
- Blended SCMs (Slag Fly Ash)
- Silica Fume
New SCM and Cement Technologies

- Alkali Activated Slag
- Natural Pozzolans
- Calcined Clays
- Ground Glass
- Reactive Synthetic Limestone
- High Limestone Replacements
- LC3

Alkali Activated Slag

- Currently Added to improved PNW Seattle Slag
- Alkali activated slag used in Europe
- Don Davies – MKA, Alkali activated slag used in Seattle
BC/Oregon/Utah Pumice & Expanded Shale

- Volcanic Origin
- Pumice is amorphous if cooled rapidly in air
- Mined by both blasting and simply digging from a bank
- Contains roughly 14% Moisture – Dried before grinding

Pumice Grinding Ball Mill – Same as Cement and Slag
Pumice

Concrete Testing

Later strengths are better than control

![Graph showing 28 Day Strength of Pumice Concrete]

RCP

Concrete Testing

Permeability is improved

![Graph showing 28 Day RCPT of Pumice Concrete]
Pumice

Concrete Testing

Shrinkage is not significantly affected

Pumice

Pumice Testing at Avro Lab

ASR mitigation is very good
Pumice

C1012 Sulfate Testing

Resistance to sulfates is greatly improved

Figure 3.10: Expansion of ASTM C 1012 wasters here, with 35% SCM replacement
What Are Calcined Clays

- Kaolinite Clay
- Clay heated to 1500 Degrees
- ASR & Sulfate Resistance
- More Reactive Typically than Fly ash or Slag
- Some see it as a silica fume replacement
- Increase Water Demand
- More Super P
Whitemud Resources Inc.

Mineral leases >150,000,000 tonnes
Proven reserves >50,000,000 tonnes
175,000 tonnes per year patented Metakaolin processing facility

Whitemud Resources Inc.

Bulk rail and truck loading facilities
Located southwest of Regina, Saskatchewan
Ground Glass - ASTM C-1866

- Two Types
 - GW and GE

TABLE 1 Chemical Requirements

<table>
<thead>
<tr>
<th></th>
<th>Class/Location</th>
<th>Type GS</th>
<th>Type GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium oxide (SO₂) (0₂), max %</td>
<td>40.0</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>Aluminum oxide (Al₂O₃), max %</td>
<td>15.0</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Calcium oxide (CaO), max %</td>
<td>15.0</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Iron oxide (Fe₂O₃), max %</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Sulfate content (SO₃), max %</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Total equivalent alkalies, Na₂O₄ max %</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Moisture content, max %</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Loss on ignition, max %</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

*Na₂O₄, % = Na₂O × 0.685R₂O₃. See Notes 1 and 2 for total equivalent alkali content ranges.

Ground Glass – Possible Carbon Sinc

- Problem with Ground Glass is soluble Alkali
- Remove Soluble Alkali with CO₂ to produce NaCO₃
- Improves ASR
- Improves Later age strengths
Synthetic Limestone

Fortera is competitive with cement production because we do not lose the CO₂ during production, reducing mining, grinding, and calcining of the limestone by 44%.

1 ton of CaCO₃

MINED LIMESTONE

No binding ability
Inconsistent size and shape
Inert filler

Kiln

CO₂

CaO

ReCaB™

1 ton of Cement

Water activated binding
Spherical particles
Reactive mineral

Not emitting process CO₂ allows for more efficient use of infrastructure from the quarry to the kiln which is where Fortera gains an economic advantage.

Vaterite (CaCO₃)

Very unstable and rarely found in nature

Aragonite (CaCO₃)

Semi-stable, found in the ocean

Calcite (CaCO₃)

Very stable, make-up of Limestone

Decreasing Reactivity
Cement
100% Replacement
Will require significant development in new standards and R&D to speed up strength development

SCM
15-35% Replacement
Able to safely phase in product as 20-40% supplement and work towards 100%

Decorative/White
15-100% Replacement
Unserved SCM market with higher cement margins

Aerated Concrete
5-70% Replacement
Large product offering, but already capitalizing on waste materials and efficient production

Bricks/Blocks
20-100% Replacement
Able to safely phase into this market with control over production through finished product

Boards/Panels
20-100% Replacement
Safely phase into this market with control over production through finished product

Portland Cement Process
Limestone + Clay, Silica, Iron → Grinder → Kiln (1450°C) → Clinker Grinding → Portland Cement 820 kg CO₂/ton

Fortera ReCarb™ Process
Limestone → Grinder → Kiln (900°C) → Fortera Process → Fortera Cement 325 kg CO₂/ton

Benefit: Less Feedstock Requirements
Benefit: Less grinding energy and intensity
Benefit: Lower Temp of 900°C for Limestone
Benefit: Capturing CO₂
Benefit: 44% More Product Reducing Grinding and Energy Per Ton of Product

Benefit: No Post Grinding Required
Benefit: 60% Lower CO₂ Emissions per Ton
IL – But higher Limestone

- Remy Winery
- Microsoft
- MISC work in Seattle
- Works well with high alumina slags and calcined clays

Limestone Calcined Clay Cement

- Limestone: 15%
- Gypsum: 5%
- Calcined Clay: 30%
- Clinker: 50%
What is Stopping us?

• Standards
• Government