BRIDGE PRESERVATION AT ODOT AND THE ST. JOHNS BRIDGE

National Concrete Consortium September 13, 2023

Presented by Ray Bottenberg, P.E., S.E. State Bridge Engineer

ODOT BRIDGE PRESERVATION THE BEGINNING

- The Conde McCullough-designed 1936 Alsea Bay Bridge was replaced due to extensive corrosion damage in 1991.
- Backlash in the Waldport community over losing their McCullough bridge.
- ODOT started the Bridge Preservation Engineering unit to apply Impressed Current Cathodic Protection and preserve the remaining coastal McCullough bridges.

ODOT BRIDGE PRESERVATION

THE BEGINNING

- Arc-sprayed zinc anode technology was adapted from CalTrans research.
 - Excellent anode properties
 - Gray concrete-like appearance
- In 1991, impressed current cathodic protection of Cape Creek Bridge was the first project for the unit.
 - Concrete repairs
 - Impressed-current cathodic protection electrically driven reversal of driving forces of corrosion
- In 1995 the unit became known as Bridge Preservation Engineering unit

ODOT BRIDGE PRESERVATION

THE BEGINNING

- The Cape Creek Bridge project was successful, and Preservation focused on the most at-risk of the McCullough coastal concrete bridges:
 - Depoe Bay Bridge 1996
 - Yaquina Bay Bridge 1997
 - Big Creek Bridge 1997
 - Cape Perpetua Half-Viaduct 1998
- The engineers ODOT used to deliver the cathodic protection projects began to be tapped for other types of specialty work:
 - Movable bridge maintenance and mechanical/electrical rehabilitation
 - Steel bridge painting
 - Covered bridge preservation

ODOT BRIDGE PRESERVATION WHY WE DO WHAT WE DO.....

ODOT BRIDGE PRESERVATION WHAT WE DO.....

- Cathodic Protection
- Bridge Painting
- Movable Bridges
- Covered Bridges
- Historic Bridge Rehabilitation
- Structural Health Monitoring
- Bridge Decks
- Specialty Engineering

ODOT BRIDGE PRESERVATION

WHAT WE DO.....

STIP Name	СР	Movable	Paint	Tota
2010-2013 STIP	1	1	1	3
2012-2015 STIP	5		11	16
2015-2018 STIP	2		4	6
2018-2021 STIP	6	3	14	23
2021-2024 STIP	2		4	6
Tota	15	4	34	53

ODOT BRIDGE PRESERVATION

WHO WE ARE.....

- Civil/Structural Engineers (4)
- Mechanical Engineers (3)
- Electrical Engineers (1)
- CADD Tech (2)
- Chemical Engineers (formerly)
- Metallurgical Engineers (formerly)
- Statewide focus
- Hands-on engineers with lots of field exposure
 - climbing
 - UBIT and bucket truck
 - confined spaces
 - respirator use

ODOT BRIDGE PRESERVATION

WHAT IT TAKES.....

- Field measurements
- Good as-builts
- Historical research (historic photo collection)
- Accurate condition data
- Core samples & petrography
- Advanced investigation
- Refined load ratings
- Flexible designs that can adapt to conditions revealed during construction
- Heavy attention to temporary works
- Lots of construction support
- Adept handling of calculated risks

ODOT BRIDGE PRESERVATION

WHAT IT TAKES.....

- Coast Guard permits
- SHPO coordination
- NMFS/USFW permits
- Hazmat surveys
- Utility coordination
- Staging Areas
- Containment
- Design exceptions for elements such as "Stealth Rail"
- Letters of Public Interest Finding (this requirement for patented, proprietary and sole-source products is being relaxed)
- Buy American Act waivers
- Third-party inspection

ODOT BRIDGE PRESERVATION WHAT OREGONIANS GET.....

- Historic and aesthetic values
- Cost savings
 - Some non-historic bridges preserved for cost savings
- Reduction in traffic impacts
- Reduction in community impacts
- The right action at the right time
- Environmental benefits
 - "Reduce, Reuse, Recycle" applies to bridges too

- Coos Bay (McCullough) Bridge No. 01823
 - Replacement is not planned, would cost on the order of \$1B
 - This bridge is over 1 mile long
 - Built in 1936, historic
 - Conde McCullough design
 - As a steel bridge in a marine environment, it requires repainting on a 20 year cycle
 - Painting cost is about \$1.6 Million per year
 - Concrete portions of the bridge require cathodic protection, on a 20 year cycle
 - Cathodic protection cost is about \$2.2 Million per year

- Yaquina Bay Bridge No. 01820
 - Replacement is not planned, would cost on the order of \$1B
 - Built in 1936, historic
 - Conde McCullough design
 - As a steel bridge in a marine environment, it requires repainting on a 20 year cycle
 - Painting cost is about \$1.6 Million per year
 - Concrete portions of the bridge require cathodic protection, on a 20 year cycle
 - Cathodic protection cost is about \$1.3 Million
 per year

- Siuslaw River (Florence) Bridge No. 01821
 - Replacement is not planned, would cost on the order of \$500 Million
 - Built in 1936, historic
 - Conde McCullough design
 - As a steel bridge in a marine environment, bascule spans require repainting on a 20 year cycle
 - Painting cost is about \$120,000 per year
 - Concrete portions of the bridge require cathodic protection, on a 20 year cycle
 - Cathodic protection cost is about \$650,000 per year
 - Movable bridge mechanical, electrical and traffic systems require major rehabilitation on a 40 year cycle, hardware and software upgrades on about a 8 year cycle

- Lint Creek (Indian Slough) Bridge No. 04166, in Waldport
 - Replacement planned for \$9.7 Million to address corrosion damage
 - 2010 concrete repair with passive zinc anodes bid cost \$499,000
 - Project allows ODOT flexibility to schedule replacement when this section of highway is expanded to four lanes
 - Repairs remain in excellent condition

- Pistol River Bridge No. 08719 between Brookings and Gold Beach
 - Replacement planned for \$30 Million to address extensive corrosion damage
 - Endangered plants at 3 corners
 - 2013 concrete repair with impressed current cathodic protection bid cost \$3.6 Million
 - Life cycle for cathodic protection is 20 years
 - Even with change orders, claim settlement, and over 2000 hours of CE the total cost is less than \$4.7 Million
 - Project allows ODOT flexibility to schedule replacement when or if this section of highway is expanded to four lanes

- Ashland Creek Bridge No. OM274
 - Replacement planned for \$1.9 Million to remove load posting
 - Urban site
 - Built in 1911, historic
 - Unreinforced concrete
 - Load rating was incomplete due to unreinforced concrete and lack of as-built plans, and assumed to be deficient
 - Preservation found a British technique for unreinforced arch load rating – rating factors improved to 6 or 7
 - No work necessary

74 - HWY 63 58 - MP: 19.09

- Dry Canyon Bridge No. 00524
 - 1920 Conde McCullough design, historic
 - In Columbia Gorge Scenic Area on Historic Columbia River Highway
 - Replacement cost based on deck area was estimated at \$1.3 Million
 - Spalling concrete was investigated, determined to be due to 2" to 4" of carbonation
 - Alternatives analysis suggested re-alkalization
 - Electrochemical process similar to impressed current cathodic protection – therefore low-risk
 - Re-alkalization project was performed
 - Damaged concrete and reinforcement was repaired
 - Bid cost was \$375,000 for re-alkalyzation
 - Project included the first re-alkalization of a bridge in the United States
 - Concrete was coated with a skim coat product to add a degree of protection and provide uniform appearance

- St. Johns Bridge No. 06497
 - Built in 1931, historic
 - Replacement is not planned, would cost on the order of \$2 Billion
 - Rehabilitation with new deck, painting, and cable protection completed in 2005
 - Main cables need corrosion monitoring
 - Deck issues, approximately \$26 Million needed for overlays in the future
 - Concrete piers supporting east approach need galvanic cathodic protection on an estimated 30 year cycle
 - Galvanic cathodic protection cost is about \$20 Million, or \$670,000 per year
 - As a steel bridge, it requires repainting on approximately a 30-40 year cycle
 - Painting cost is about \$1.5 Million per year

- St. Johns Bridge No. 06497
 - Spalling of pier concrete over structural steel frame

- St. Johns Bridge No. 06497 Project Underway
 - Provide access/containment
 - Clean structural steel
 - Install anchors
 - Install zinc anodes
 - Patch concrete
 - Skim coat

QUESTIONS?

on rtment reportation

You Tube

RAY BOTTENBERG, P.E., S.E. State Bridge Engineer 503-551-7934

y

f

ODOT BRIDGE ENGINEERING SECTION 503-986-4200