Enhancing Performance with Internally Cured Concrete (EPIC²)

Tim Barrett, Ph.D.
Federal Highway Administration

Internal Curing (IC)

“Process by which the hydration of cement continues because of the availability of internal water that is not part of the mixing water.” – ACI Concrete Terminology
Key Takeaways From Today

• The technology is not difficult to try
• There are no design modifications required
• Internal curing can be the belt to your suspenders when it comes to cracking and enhancing performance in bridge decks
• At the end of the day, we’re just putting wet rocks in concrete

Let’s make this EPIC²!
Cracking

More than half of agencies polled report frequent occurrence of cracking in cast-in-place concrete decks during the previous 5 years. (NCHRP Synthesis 500 Control of Concrete Cracking in Bridges, 2017)

Cracking is a key limiting factor in achieving acceptable long-term performance.

The Causes Are Many

- Concrete Mixture Design
- Structural Design
- Environmental Exposure
  - Temperature
  - Relative Humidity
- Cements
- Chemical Admixtures
- Construction Practices
- Bad Luck… the list goes on…

“Everything but the kitchen sink.”

Source: FHWA
The Effect is Clear.

Age (years) when more than half of bridges likely have inherent cracking in deck throughout:

Data Source: NBI, 2022. Deck condition (Item 58) rating of 7 (Good) or lower.

AASHTO T-4 Construction & T-10 Concrete Design Committees Supported
NCHRP Domestic Scan 22-01: Recent Leading Innovations in the Design, Construction, and Materials Used for Concrete Bridge Decks.

"Deterioration of concrete bridge decks due to corrosion of steel reinforcement has limited the service life and increased the maintenance cost of bridge structures. Concrete bridge decks deteriorate faster than any other bridge component because of direct exposure to environment, deicing chemicals, and ever-increasing traffic loads. The magnitude of cracking and delamination of concrete bridge decks due to corrosion is a major problem when measured in terms of rehabilitation costs and traffic disruption. Steel reinforcement are often protected from elements causing corrosion or replaced with alternative non-corrodible materials in new structures."

We all agree.
EPIC² Mission

Equip bridge, materials, and construction engineers with the knowledge and tools to design, specify, and implement internal curing into practice.

Internal Curing (IC)

“Process by which the hydration of cement continues because of the availability of internal water that is not part of the mixing water.”

Hide the curing water inside the concrete when you make it.
Solution:
Refill the emptying pores that cause shrinkage from an internal source.

20+ years of R&D, 400+ research products. The science is clear, internal curing works.

Current Practice:
Just Replace Some Sand.

Volumetric Mixture Proportions

Plain

EPIC²

10 - 40% Replacement, typ.
Mixture Proportions

\[ M_{LWA,OD} = \frac{C_f \cdot CS \cdot \alpha_{max}}{S \cdot \phi_{LWA}} \]

- \(C_f\): Cement Content (lb/yd³)
- \(CS\): Chemical Shrinkage (lb water / lb cementitious)
- \(\alpha_{max}\): Degree of Hydration (%)
- \(M_{LWA,OD}\): Mass of LWA (oven dry basis)
- \(\phi_{LWA}\): LWA Absorption (%)
- \(S\): Saturation Factor (%)

Typically:
Supply 7 lb of water per 100 lb of cementitious (CS = 0.07)

Spreadsheet Design

Developed as a part of the report for INDOT implementation.

Available for download:
https://docs.lib.purdue.edu/jtrp/1574/
APPENDIX H. Mixture Design Worksheet.xlsx

Webinar training module available now!

“Mixture Design” Tab:
- Plain mixture design (input)
- Internal curing properties (input)
- IC mixture design (output)
Where Should IC Be Used?

1. Bridge Decks

Structures that need enhanced service life.

Source: FHWA
2. Repairs
- High Early Strength
- High-paste Content

Elements or mixtures that have high shrinkage or cracking potential.

Source: FHWA

3. Pavements
- Low Curl Performance
- Extended Control Joint Spacing

Any element where reduced shrinkage adds desired performance.

Source: FHWA
Advantages of Internal Curing

• Works automatically
• Compatible with current concrete practice
• Simple modification to concrete mixture design proportions
• No modifications to structural design process
• Economical
• Unlike some things in construction, it's hard to forget to do
• Works automatically

Performance Benefits

• Substantial reduction in total cracking potential
• Improved resistance to:
  • plastic shrinkage
  • drying shrinkage
  • thermal shrinkage or gradients
• Continued and extended hydration of cement
• Creates potential for very high durability concrete with mitigation of cracks typical in traditional “high performance concrete”
• Secondary benefits such as improved alkali silica reaction resistance
Compressive Strength

- Compressive strength may vary by small amounts in individual trials
- Variation as a class of concrete not significant
- If employing HPC, typically much stronger than designed

IC HPC: Internally cured, High performance concrete
HPC: High performance concrete

Source: FHWA
Data: Barrett et al. (2015)

Young’s Elastic Modulus

- Modulus of elasticity follows code expressions for conventional concrete
- This is not lightweight concrete ($\lambda=1$)
- Typical unit weight ~135+ lb/ft$^3$

Source: FHWA
Data: Barrett et al. (2015)
Tensile Strength

- Tensile strength follows code expressions for conventional concrete
- This is not lightweight concrete ($\lambda=1$)

Shrinkage Considerations

Pickett’s Eq. for concrete shrinkage strain

$$\varepsilon_c = \varepsilon_p (1 - V_A)^n$$

- $\varepsilon_c$: shrinkage of concrete
- $\varepsilon_p$: shrinkage of paste
- $V_A$: volume fraction of aggregate
- $n$: aggregate stiffness parameter
Shrinkage Considerations

• For fixed volume of paste:
  • Drying shrinkage higher with higher w/c
  • Autogenous shrinkage higher with lower w/c
  • Total shrinkage approximately constant across w/c

70% Volume of Aggregate:

Source: FHWA after Weiss (2022)

“Drying” (Total) Shrinkage

Source: FHWA
Data: Barrett et al. (2015)

Modified ASTM C157

Not a test that should be necessarily specified

Source: FHWA
Data: Barrett et al. (2015)
Autogenous Shrinkage

These are specialized tests that verify the design intent for IC, not for spec.

Combined Drying & Autogenous Shrinkage

- Benefits remain clear
- Providing sufficient curing water by amount of LWA is key
- Not a test that should be specified

Vp: volume of paste

w/c: water-to-cement ratio (mass basis)
Performance Relative to Shrinkage Reducing Admixtures?

Similar reduction to cracking potential as industry-standard optimum dosage of 1.5 gallon per cubic yard.

“Head to Head” Comparison

Cracking after 1 Year of Service

Source: FHWA

Data: Wang et al. (2019)
**Shrinkage Cracking Performance**

Cracking Substantially Reduced

Source: FHWA  
Data: Lafikes et al. (2020)

---

**Thermal Cracking Performance**

Internal curing lowers the coefficient of thermal expansion  
Higher resistance to thermal cracking

Source: FHWA  
Data: Barrett (2015)
Estimated Service Life

Estimated Corrosion Initiation Service Life:

- 60-90 years
- ~3 to 4.5x increase

Source: FHWA Data: Barrett et al. (2014)

Percentage of Bridges, Less Than 10 Years of Age, Deck Condition Rating of 9

New York was the first to institutionalize, nearly a decade ago.

Data Source: NBI, 2022.
Deck condition (Item 58) rating of 9 (Excellent Condition).
Internally cured, high performance concretes have been estimated to reduce lifecycle cost by 29 - 70% compared to control.

Sources: Cusson et al. (2010), Guo et al. (2014), Wang et al. (2019)

Baseline (April 2023)
Path to Success

Educate
• Case Study Summary
• Targeted Workshops & Webinars
• Training Videos

Specify
• Guide Specification
• Design Examples
• QC/QA Guidance

Pilot
• Best Practices & FAQ Guide
• Peer Exchange & Demonstrations
• Centrifuge Access

Monitor
• Crack Inspections
• Post-Construction Remedial Work Occurrences
• Deck Condition Ratings

That Would Be:
EPIC²

Goal (May 2025)
Want More Content?

Every Day Counts Virtual Summit - Available On-Demand

fhwa-everyday-counts-7-virtual-summit.com
On-Demand Webinars

Theory & Performance of Internally Cured Concrete

Mixture Proportioning for Internally Cured Concrete

Lessons Learned in NY, IN, and LA

Keep Informed

Sign up for EDC News and Innovator

Get on your mobile device! Text “FHWA Innovation” to 468311

https://www.fhwa.dot.gov/innovation/
Disclaimers

Except for any statutes or regulations cited, the contents of this presentation do not have the force and effect of law and are not meant to bind the public in any way. This presentation is intended only to provide information regarding existing requirements under the law or agency policies.

The U.S. Government does not endorse products, manufacturers, or outside entities. Trademarks, names, or logos appear here only because they are considered essential to the objective of the presentation. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.

References

Thank you

Questions / Comments Please?