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Outline

● Need for alternatives to air entrainment
● Polymeric microspheres as a suitable alternative to air entrainment 
● Innovations that now make the practical application of polymeric microspheres in 

concrete possible
● Mechanism by which polymeric microspheres protect concrete from freezing-

and-thawing or frost damage 
● Present test data to demonstrate:

○ Freezing-and-thawing durability of microsphere concrete
○ Levels of reduction in cement content (and subsequently embodied carbon) 

when microspheres are used in place of air-entraining agents
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Need for Alternatives to Air Entrainment
● Air entrainment with surfactants is an effective means of achieving a freezing-and-thawing 

durable concrete 
● Controlling the air void system is one of the most difficult and frustrating aspects of 

concrete production.
● Variability in air content of concrete due to variations in concrete materials, mixing, 

transportation, ambient temperature, placement method, and testing leads to problems:

o Difficulty in consistently obtaining target air-void systems

o Increased need for quality control at the project site

o Occasionally, removal and replacement of hardened 
concrete that is determined to be non-compliant

o Lower production rate of concrete

o More rejected loads

o Difficulty in achieving specified 
strength

Costs:  Money, environmental impact, project delays… 

Polymeric Microspheres
● Expanded polymeric microspheres (in powder, paste or slurry form) have been found to 

protect concrete from freezing-and-thawing damage since the 1970’s. 
○ Manufactured by suspension polymerization, then expanded to a target size by heating

● Insensitive to the factors that impact air entrainment with surfactants, resulting in a 
more robust and reliable alternative technology.

● Hollow-core polymeric microspheres are dimensionally stable; and are produced as:
○ Gas-filled wet-expanded microspheres in a wet foam or slurry form, or
○ Gas-filled dry-expanded microspheres in a dry powder form

● Microspheres are engineered materials, implying a high level of consistency in their 
production and are commercially available 

In past attempts at practical application, 
microspheres have tended to agglomerate, 
providing inconsistent performance
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New Delivery Method of Microspheres – Dry Powder Form

● Blend of microspheres and mineral powder or precoated microspheres
● Results in good dispersion, consistent performance in concrete

Microsphere powder as 
produced tends to 

agglomerate

Powder blend with 
mineral powder coating: 

well-dispersed 
microspheres

During concrete mixing, the electrostatic attraction between the 
microspheres and the mineral powder is broken allowing for 
good dispersion of the microspheres.

How Microspheres Perform in Concrete
● Microspheres have higher CTE than the concrete matrix and create annulus voids under 

temperature change – provide room for ice crystals to form
● Created during freezing, but are closed when temperature rises – “on demand voids”

Annulus
Void

Microsphere at a freezing temperature
(Moffatt & Thomas, CI 2019)

“Compliance Concept in Protection of Concrete from Freezing-and-Thawing
Damage,” ACI Materials Journal, V. 117, No. 6, Nov.-Dec. 2020.

Micromechanics-based explanation developed 
on how microspheres perform in concrete and 
the properties that control performance.

 𝐴௠௜௡ൌ
𝑝𝐷௘

8𝑠̅௟௜௠௜௧ െ 𝐷௘

For most concretes (𝑝 ≤ 32%),  𝐴௠௜௡ is about 1.0% 
microsphere content by volume (which is 5 lb/yd3) 
for the microsphere type used

(dosage guidance sheet is available)

𝐴௠௜௡=microsphere content by volume of concrete

𝐷௘ = effective or average diameter of the microspheres

𝑝 = the air-free paste content of the concrete

𝑠̅௟௜௠௜௧ = furthest a point in the paste can be from the 
surface of a microsphere for the concrete to be durable
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Delivery of Microspheres via Dry Powder Form
• 5 lb (2.27 kg) of the microsphere-powder blend is packaged in a 

commercially-available patented dissolvable paper sack or bag that 
disintegrates and completely disappears during concrete mixing. 

• For the dosage of 5 lb/yd3, the number of 5-lb bags added to a 
typical concrete mixture will match the batch size in yd3. It is 
recommended to round up or down to the nearest whole number of 
bags for the batch size.

• Bags loaded into concrete truck – bag disintegrates within 2 minutes 
of truck mixing

• To facilitate dispensing for large projects with a single concrete 
mixture design (such as construction of concrete pavements), the 
product could be premixed with the cement.

• Using current manufacturing cost – adds $8 to $9 per cy concrete

● Truck addition: count the number of bags added
● Quality control prior to concrete placement
■ Volumetric meter test, ASTM C173, for verification of 

microsphere content without use of isopropyl alcohol 
(solvent damages microspheres).

■ Testing with air-pressure meter, ASTM C231, does 
not detect the presence of the microspheres. 
Pressures used in the test are not high enough to 
compress the microspheres.

■ Standards would need to be revised to 
accommodate this material

QC – Dosage Verification in Fresh Concrete

“A New Way to Deliver Protection from Freezing-and-Thawing 
Damage,” ACI Concrete International, V. 43, No. 1, Jan. 2021.

Microsphere
Layer

Foam Layer
(Entrapped Air)
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QC – Dosage Verification in Hardened Concrete

Entrapped 
Air Void

Microsphere

Microsphere

ASTM C457 test performed 
@ 200x magnification

• “Microspheres in Hardened 
Concrete,” ACI Concrete 
International, 44(3), March 2022.

• “Predicting the Magnitude of 
Microsphere Parameters obtained 
from Microscopical Examination of 
Hardened Concrete,” ASTM Journal 
of Testing and Evaluation, V. 51, No. 
5, Sept./Oct. 2023, 
https://doi.org/10.1520/JTE20220469

Initial Tests Using 
Carolinas Materials 

and Mixtures

Concrete Mixtures

A (AEA) B (microspheres) C (AEA) D (microspheres)

Cement (pcy) 574 500

Fly ash (pcy) 101 167

Coarse Agg (pcy) 1871

Fine agg (pcy) 1102 1199 1100 1197

Water (pcy) 313 309

w/cm ratio 0.46

AEA (oz/cwt) 0.2 --- 0.21 ---

Microspheres (pcy) --- 5.57 --- 5.58

Fresh Properties

Unit weight (pcf) 143.1 150.2 144.1 149.4

% air – pressure 7.4 2.2 6.8 2.3

% air volumetric
7.3

2.75 w/0.75 
microspheres

7.0
3.25 w/1.0 

microspheres

Compressive Strength

7-day avg (psi) 3930 4840 (23%) 3420 4220 (23%)

28-day avg (psi) 5125 6100 (19%) 4500 5630 (25%)

56-day avg (psi) 5635 7155 (27%) 5360 6955 (29%)

Increased strength offered by microsphere inclusion (due to lower air volume) 
offers the opportunity to reduce cement content, lowering embodied carbon
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Freeze-Thaw Test 
Performance

Concrete Mixtures

A (AEA) B (microspheres) C (AEA) D (microspheres)

Cement (pcy) 574 500

Fly ash (pcy) 101 167

Water (pcy) 313 309

w/cm ratio 0.46

AEA (oz/cwt) 0.2 --- 0.21 ---

Microspheres (pcy) --- 5.57 --- 5.58

Durability Factor (%), ASTM C666 Procedure A

300 cycles 98.9 94.1 94.3 92.2

570 cycles 98.4 92.7 93.8 92.7

630 cycles 96.8 90.3 95.4 87.5

900 cycles 95.9 81.1 92.3 69.1

Mass Loss (%)

300 cycles 0.45 0.84 0.25 1.40

570 cycles 0.84 1.62 0.79 3.02

630 cycles 1.09 2.01 0.97 3.60

900 cycles 1.63 3.24 1.58 5.36

Durability factors (DF) 
greater than 90% for 
both air-entrained and 
microsphere       
concretes - excellent 
durability

Mixture A after 
300 F-T cycles

Mixture A after 
900 F-T cycles

Mixture B after 
300 F-T cycles

Mixture B after 
900 F-T cycles



9/2023

7

Mixture C after 
300 F-T cycles

Mixture C after 
900 F-T cycles

Mixture D after 
300 F-T cycles

Mixture D after 
900 F-T cycles

Additional Tests Using Carolinas Materials and Mixtures

Mixture ID 6397 6398 6399 6406 6407 6408
% Fly Ash Replacement 25% 30%

w/cm ratio
0.55 

(high)
0.49 

(medium)
0.43
(low)

0.54
(high)

0.48
(medium)

0.42
(low)

Type I/II cement (lb/yd3) 415 465 530 384 432 493
Fly ash (lb/yd3) 138 155 177 164 185 211

Total cementitious 
materials content 

(lb/yd3)
553 620 707 548 617 704

• Two series of mixtures (25% fly ash, 30% fly ash)
• Goal: obtain data to support development of a 3-point strength vs. w/cm ratio curve (ACI 301 trial mix 

method) that could be used to support development and submittal of mixtures for specified strengths of 
3,000 to 5,000 psi at 28 days

• All six mixtures contained microspheres – no air entraining admixture used
• Compressive strength tested, freeze-thaw testing performed ASTM C666, Procedure A through 600 cycles
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Microsphere mixture performance in ASTM C666 Procedure A
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Fly ash mixtures with lowest values of w/cm (< 0.45) showed a 
somewhat rapid decline in durability factor after 500 cycles –

Not confirmed in next phase of tests
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Microsphere mixture performance in ASTM C666 Procedure A
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Mixture 6406 

30% ash, 0.54 w/cm 
after 300 F-T cycles

Mixture 6406 

30% ash, 0.54 w/cm 
after 600 F-T cycles

Mixture 6408 

30% ash, 0.42 w/cm 
after 300 F-T cycles

Mixture 6408 

30% ash, 0.42 w/cm 
after 600 F-T cycles

Findings 
• All microsphere mixtures in this series had DF near 100 at 300 cycles, exhibiting excellent performance
• Most microsphere mixtures in this series showed DF near 100% up to about 500 cycles
• After 500 cycles, mixtures with lowest w/cm ratios began to decline more rapidly

• After 600 cycles (2x typical test duration), the relative dynamic modulus / durability factor of each
microsphere mixture was greater than 70%

• Four mixtures (25% fly ash at 0.55 and 0.49 w/cm ratio, and 30% fly ash at 0.54 and 0.48 w/cm ratio)
retained relative dynamic moduli / durability factors of nearly 100% after 600 cycles.

● Lowest w/cm mixtures exhibited the lowest mass loss at both 25% and 30% fly ash levels.
● Mixtures with w/cm above 0.50 exhibited higher mass loss at both levels of fly ash 
● Results indicated that use of fly ash as high as 30% may need to be limited to microsphere concrete with 

w/cm between 0.45 and 0.50 to achieve a good resistance to mass loss and a high durability factor.
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More Tests Using Carolinas Materials and Mixtures
• Three sets of mixtures designed to meet local/state specifications

• Goal 1: Develop microsphere mixtures that should compare similarly in strength to typical mixtures used for 
local/NCDOT purposes

• Goal 2: Explore potential global warming potential (GWP) reduction
• Note:  does not include GWP of microspheres – yet to be established (likely to be very small compared 

to the GWP of cement removed)

Description
NCDOT

Class AA 4,500 psi
City of Charlotte 3,600 psi 
NCDOT Class B 2,500 psi

NCDOT 
Class A 3,000 psi

Mixture ID 6915 6916 6917 6918 6954 6955

freeze-thaw approach AEA Microsp. AEA Microsp. AEA Microsp.

% fly ash 23.1 30 20 30 23.2 30%

cement (pcy) 572 493 523 409 451 384

fly ash (pcy) 172 211 131 175 136 165

Design/actual w/cm ratio 0.39 / 0.39 0.426 / 0.426 0.46 / 0.427 0.50 / 0.50 0.47 / 0.47 0.532 / 0.532

GWP (kg CO2eq pcy) 253 225 234 192 207 182

Reduction in GWP (%) --- 11.07 --- 17.95 --- 12.08

Compressive strength test results
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Avg 28‐day
comp str (psi)

Avg 56‐day
comp str (psi)

Avg 90‐day
comp str (psi)

NCDOT Class AA 4,500 psi City of Charlotte 3,600 psi
NCDOT Class B 2,500 psi

NCDOT Class A 3,000 psi

AEA AEA AEAMicrosp Microsp Microsp

= specified compressive strength NCDOT
= specified compressive strength City of Charlotte
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Performance in ASTM C666 Procedure A
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6954 (AEA, 23.2% fly ash, 0.47 w/cm)
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Durability factors of fly ash mixtures with 
w/cm < 0.45 remained stable beyond 
500 cycles, contrary to results in the 
earlier tests 

Performance in ASTM C666 Procedure A
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6918 (microsp, 30% fly ash, 0.50 w/cm)
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Mixture 6915 

23.1% ash, 0.39 w/cm 
after 300 F-T cycles

Mixture 6915 

23.1% ash, 0.39 w/cm 
after 600 F-T cycles

Mixture 6916 

30% ash, 0.426 w/cm 
after 300 F-T cycles

Mixture 6916 

30% ash, 0.426 w/cm 
after 600 F-T cycles

Mixture 6954 

23.2% ash, 0.47 w/cm 
after 300 F-T cycles

Mixture 6954 

23.2% ash, 0.47 w/cm 
after 600 F-T cycles

Mixture 6955

30% ash, 0.532 w/cm 
after 300 F-T cycles

Mixture 6955 

30% ash, 0.532 w/cm 
after 600 F-T cycles
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Findings 
• 28-day compressive strengths for both AEA and microsphere mixtures met respective targets

• After 300 cycles, microsphere mixtures exhibited DF not less than around 90% (89.4%)

• Microsphere mixtures continued to show suitable durability performance up to 600 cycles:
• Mixtures containing fly ash at replacement levels of 20% to 30% and w/cm ratios of 0.387 to

0.532 exhibited DF >80% up to approximately 480 cycles.

• After that point, DF of the microsphere mixtures with the two highest w/cm ratios (0.50 and
0.532) began to decline but attained a value greater than 65% at 600 cycles.

• At 600 cycles, the DF for the microsphere mixture with the lowest w/cm of 0.426 was 93%.

Findings 
• Mixtures with w/cm greater than or equal to 0.50 at a 30% fly ash replacement rate exhibited

high mass loss in the study relative to mixtures with w/cm below 0.50
• Again, indicates that use of fly ash as high as 30% would need to be limited to microsphere

concrete with w/cm below 0.50 to achieve a good resistance to mass loss and a high DF
under severe conditions

• Because of their excellent DF values of at least 90% but high mass losses under the severe
exposure condition, the mixtures with w/cm in the range of 0.50 to 0.55 may be adequate for
use in mild winter exposure conditions

• Previous round of tests indicated that use of w/cm ratios below 0.45 may yield concrete with a
relatively high stiffness that may cause some level of internal cracking, hence, reduced DF,
during extended freeze-thaw cycling.

• This finding was not observed in this series of tests.
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Findings 
• Additional study may be warranted to understand the role, if any, of stiffness of low w/cm concretes in the freeze-

thaw performance of microsphere concrete.

• Significant benefit of a lower w/cm was observed in both parts of the study by the lower mass losses for the
microsphere concrete mixtures with 30% fly ash and w/cm in the range of 0.42 to 0.48 compared with the mass
losses for mixtures with w/cm higher than 0.50.

• DF for the microsphere mixtures with w/cm < 0.50 were at least 98% after the standard 300 cycles of testing, and,
therefore, would meet any specified durability factor in the commonly specified range of 60% to 95%.
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Summary of Findings 

• Microsphere concrete mixtures with fly ash contents up to 30% and w/cm in the range of 0.40
to 0.50 had high durability factors and good resistance to mass loss under the severe freeze-
thaw exposure conditions represented in the ASTM C666 Procedure A test

• Microsphere concrete mixtures with fly ash contents up to 30% and w/cm in the range of 0.50
to 0.55 may be adequate for use in mild exposure conditions, such as the typical winter
condition in North Carolina

• Microsphere concrete mixtures with 30% fly ash met the Class AA and Class B specification
requirements of NCDOT for compressive strength and freeze-thaw durability at w/cm of 0.426
and 0.50, respectively

• The embodied carbon contents as measured by the calculated GWP values for the
microsphere concrete mixtures with a 30% fly ash content are 11% to 18% lower than the
GWP values for the corresponding conventional air-entrained concrete mixtures
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Conclusions - Durability and Environmental Benefits 
● Microspheres are insensitive to factors that cause problems with surfactant air entrainment

○ Can provide a reliable alternative technology for achieving a frost-resistant concrete.

● Can avoid the strength loss caused by air entrainment
○ Cement contents can be reduced in the range of 10 to 20% to achieve compressive

strength comparable to that of air-entrained concrete (i.e., reduce the embodied carbon
of concrete).

○ Can allow for replacement of portland cement with fly ash or other SCMs at higher
levels compared with the levels used in air-entrained concrete, including allowing for the
use of fly ash with high unburned carbon content.

● Could reduce the need to reject truck loads of concrete due to improper levels of air
entrainment, thereby avoiding the use of more material than necessary to complete a project.

Conclusions - Constructability Benefits 

• Can eliminate or reduce the production and placement issues related to pumped air-
entrained concrete.

• Allows for dense, polished, machine-troweled surfaces to be specified for concrete slabs in
freezing-and-thawing environments.

• Can increase productivity and potentially lower concrete production costs by not having
personnel to constantly check and manage air-entrained concrete.

• Could support development of concrete mixtures with a stiff consistency that are difficult to
air entrain, such as pervious concrete and roller-compacted concrete, to show improved
freeze-thaw resistance.
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