

Outline

- Need for alternatives to air entrainment
- Polymeric microspheres as a suitable alternative to air entrainment
- Innovations that now make the practical application of polymeric microspheres in concrete possible
- Mechanism by which polymeric microspheres protect concrete from freezingand-thawing or frost damage
- Present test data to demonstrate:
 - Freezing-and-thawing durability of microsphere concrete
 - Levels of reduction in cement content (and subsequently embodied carbon) when microspheres are used in place of air-entraining agents

UNIVERSITY OF NORTH CAROLINA CHARLOTTE COLLEGE OF ENGINEERING

• Expanded polymeric microspheres (in powder, paste or slurry form) have been found to protect concrete from freezing-and-thawing damage since the 1970's.

• Manufactured by suspension polymerization, then expanded to a target size by heating

- Insensitive to the factors that impact air entrainment with surfactants, resulting in a more robust and reliable alternative technology.
- Hollow-core polymeric microspheres are dimensionally stable; and are produced as:
 - o Gas-filled wet-expanded microspheres in a wet foam or slurry form, or
 - Gas-filled dry-expanded microspheres in a dry powder form
- Microspheres are engineered materials, implying a high level of consistency in their production and are commercially available

In past attempts at practical application, microspheres have tended to agglomerate, providing inconsistent performance

How Microspheres Perform in Concrete

- Microspheres have higher CTE than the concrete matrix and create annulus voids under temperature change – provide room for ice crystals to form
- Created during freezing, but are closed when temperature rises "on demand voids"

Microsphere at a freezing temperature (Moffatt & Thomas, Cl 2019)

For most concretes ($p \le 32\%$), A_{min} is about 1.0% microsphere content by volume (which is 5 lb/yd³) for the microsphere type used (dosage guidance sheet is available)

"Compliance Concept in Protection of Concrete from Freezing-and-Thawing Damage," ACI Materials Journal, V. 117, No. 6, Nov.-Dec. 2020.

Micromechanics-based explanation developed on how microspheres perform in concrete and the properties that control performance.

$$A_{min} = \frac{pD_e}{8\bar{s}_{limit} - D_e}$$

 A_{min} =microsphere content by volume of concrete D_e = effective or average diameter of the microspheres p = the <u>air-free</u> paste content of the concrete \bar{s}_{limit} = furthest a point in the paste can be from the surface of a microsphere for the concrete to be durable

> UNIVERSITY OF NORTH CAROLINA THE WILLIAM STATES LEE CHARLOTTE

Delivery of Microspheres via Dry Powder Form

- 5 lb (2.27 kg) of the microsphere-powder blend is packaged in a commercially-available patented dissolvable paper sack or bag that disintegrates and completely disappears during concrete mixing.
- For the dosage of 5 lb/yd³, the number of 5-lb bags added to a typical concrete mixture will match the batch size in yd³. It is recommended to round up or down to the nearest whole number of bags for the batch size.
- Bags loaded into concrete truck bag disintegrates within 2 minutes of truck mixing
- To facilitate dispensing for large projects with a single concrete mixture design (such as construction of concrete pavements), the product could be premixed with the cement.
- Using current manufacturing cost adds \$8 to \$9 per cy concrete

CHARLOTTE

QC – Dosage Verification in Fresh Concrete

- Truck addition: count the number of bags added
- Quality control prior to concrete placement
- Volumetric meter test, ASTM C173, for verification of microsphere content without use of isopropyl alcohol (solvent damages microspheres).
- Testing with air-pressure meter, ASTM C231, does not detect the presence of the microspheres.
 Pressures used in the test are not high enough to compress the microspheres.
- Standards would need to be revised to accommodate this material

"A New Way to Deliver Protection from Freezing-and-Thawing Damage," *ACI Concrete International*, V. 43, No. 1, Jan. 2021.

UNIVERSITY OF NORTH CAROLINA THE WILLIAM STATES LEE CHARLOTTE

luciti el Telete I le in el		Concrete Mixtures				
Initial Tests Using		A (AEA)	B (microspheres)	C (AEA)	D (microspheres)	
Carolinas Materials	Cement (pcy)	574		500		
and Mixtures	Fly ash (pcy)		101	10	167	
	Coarse Agg (pcy)	1871				
	Fine agg (pcy)	1102	1199	1100	1197	
	Water (pcy)	313		309		
	w/cm ratio	0.46				
	AEA (oz/cwt)	0.2		0.21		
	Microspheres (pcy)		5.57		5.58	
	Fresh Properties					
	Unit weight (pcf)	143.1	150.2	144.1	149.4	
	% air – pressure	7.4	2.2	6.8	2.3	
	% air volumetric	7.3	2.75 w/0.75 microspheres	7.0	3.25 w/1.0 microspheres	
	Compressive Strength					
	7-day avg (psi)	3930	4840 (23%↑)	3420	4220 (23%↑)	
	28-day avg (psi)	5125	6100 (19%↑)	4500	5630 (25%↑)	
	56-day avg (psi)	5635	7155 (27%↑)	5360	6955 (29%↑)	

Increased strength offered by microsphere inclusion (due to lower air volume) offers the opportunity to reduce cement content, lowering embodied carbon

UNIVERSITY OF NORTH CAROLINA THE WILLIAM STATES LEE CHARLOTTE

9/2023

		Concrete Mixtures				
Freeze-Thaw Test		A (AEA)	B (microspheres)	C (AEA)	D (microspheres)	
Performance	Cement (pcy)	574 500			00	
	Fly ash (pcy)	101		167		
	Water (pcy)		313	309		
→ Air Entrained @ 7.4%; Fly Ash @ 15%	w/cm ratio	0.46				
	AEA (oz/cwt)	0.2		0.21		
20	Microspheres (pcy)		5.57		5.58	
¹ → Microspheres @ 1.0%; Fly Ash @ 25% ¹ → Microspheres @ 1.0%; Fly Ash @ 25% ¹ → Microspheres @ 1.0%; Fly Ash @ 25%	Durability Factor (%), ASTM C666 Procedure A					
Number of Cycles	300 cycles	98.9	94.1	94.3	92.2	
	570 cycles	98.4	92.7	93.8	92.7	
Durability factors (DF)	630 cycles	96.8	90.3	95.4	87.5	
greater than 90% for	900 cycles	95.9	81.1	92.3	69.1	
both air-entrained and	Mass Loss (%)					
microsphere	300 cycles	0.45	0.84	0.25	1.40	
durability	570 cycles	0.84	1.62	0.79	3.02	
	630 cycles	1.09	2.01	0.97	3.60	
	900 cycles	1.63	3.24	1.58	5.36	
CONCRETE SUPPLY CO.	;			UNIVERSITY OF NORTH OF CHARLOT	TTE WILLIAM STATES LEE	

Additional Tests Using Carolinas Materials and Mixtures

- Two series of mixtures (25% fly ash, 30% fly ash)
- Goal: obtain data to support development of a 3-point strength vs. w/cm ratio curve (ACI 301 trial mix method) that could be used to support development and submittal of mixtures for specified strengths of 3,000 to 5,000 psi at 28 days
- All six mixtures contained microspheres no air entraining admixture used
- Compressive strength tested, freeze-thaw testing performed ASTM C666, Procedure A through 600 cycles

Mixture ID	6397	6398	6399	6406	6407	6408
% Fly Ash Replacement		25%			30%	
w/cm ratio	0.55 (high)	0.49 (medium)	0.43 (low)	0.54 (high)	0.48 (medium)	0.42 (low)
Type I/II cement (lb/yd ³)	415	465	530	384	432	493
Fly ash (lb/yd ³)	138	155	177	164	185	211
Total cementitious materials content (lb/yd ³)	553	620	707	548	617	704

Findings

- All microsphere mixtures in this series had DF near 100 at 300 cycles, exhibiting excellent performance
- Most microsphere mixtures in this series showed DF near 100% up to about 500 cycles
- · After 500 cycles, mixtures with lowest w/cm ratios began to decline more rapidly
- After 600 cycles (2x typical test duration), the relative dynamic modulus / durability factor of each microsphere mixture was greater than 70%
- Four mixtures (25% fly ash at 0.55 and 0.49 w/cm ratio, and 30% fly ash at 0.54 and 0.48 w/cm ratio) retained relative dynamic moduli / durability factors of nearly 100% after 600 cycles.
- Lowest w/cm mixtures exhibited the lowest mass loss at both 25% and 30% fly ash levels.
- . Mixtures with w/cm above 0.50 exhibited higher mass loss at both levels of fly ash
- Results indicated that use of fly ash as high as 30% may need to be limited to microsphere concrete with w/cm between 0.45 and 0.50 to achieve a good resistance to mass loss and a high durability factor.

UNIVERSITY OF NORTH CAROLINA THE WILLIAM STATES LEE CHARLOTTE

More Tests Using Carolinas Materials and Mixtures

- Three sets of mixtures designed to meet local/state specifications
- Goal 1: Develop microsphere mixtures that should compare similarly in strength to typical mixtures used for local/NCDOT purposes
- Goal 2: Explore potential global warming potential (GWP) reduction
 - Note: does not include GWP of microspheres yet to be established (likely to be very small compared to the GWP of cement removed)

Description	NCI Class AA	DOT 4,500 psi	City of Charlotte 3,600 psi NCDOT Class B 2,500 psi		NCDOT Class A 3,000 psi	
Mixture ID	6915	6916	6917	6918	6954	6955
freeze-thaw approach	AEA	Microsp.	AEA	Microsp.	AEA	Microsp.
% fly ash	23.1	30	20	30	23.2	30%
cement (pcy)	572	493	523	409	451	384
fly ash (pcy)	172	211	131	175	136	165
Design/actual w/cm ratio	0.39 / 0.39	0.426 / 0.426	0.46 / 0.427	0.50 / 0.50	0.47 / 0.47	0.532 / 0.532
GWP (kg CO ₂ eq pcy)	253	225	234	192	207	182
Reduction in GWP (%)		11.07		17.95		12.08

UNIVERSITY OF NORTH GAROLINA THE WILLIAM STATES LEE CHARLOTTE COLLEGE OF ENGINEERING

Findings

· 28-day compressive strengths for both AEA and microsphere mixtures met respective targets

- After 300 cycles, microsphere mixtures exhibited DF not less than around 90% (89.4%)
- Microsphere mixtures continued to show suitable durability performance up to 600 cycles:
 - Mixtures containing fly ash at replacement levels of 20% to 30% and w/cm ratios of 0.387 to 0.532 exhibited DF >80% up to approximately 480 cycles.
 - After that point, DF of the microsphere mixtures with the two highest w/cm ratios (0.50 and 0.532) began to decline but attained a value greater than 65% at 600 cycles.
 - At 600 cycles, the DF for the microsphere mixture with the lowest w/cm of 0.426 was 93%.

Findings

- Mixtures with w/cm greater than or equal to 0.50 at a 30% fly ash replacement rate exhibited high mass loss in the study relative to mixtures with w/cm below 0.50
- Again, indicates that use of fly ash as high as 30% would need to be limited to microsphere concrete with w/cm below 0.50 to achieve a good resistance to mass loss and a high DF under severe conditions
- Because of their excellent DF values of at least 90% but high mass losses under the severe exposure condition, the mixtures with w/cm in the range of 0.50 to 0.55 may be adequate for use in mild winter exposure conditions
- Previous round of tests indicated that use of w/cm ratios below 0.45 may yield concrete with a relatively high stiffness that may cause some level of internal cracking, hence, reduced DF, during extended freeze-thaw cycling.
- This finding was not observed in this series of tests.

Findings

- Additional study may be warranted to understand the role, if any, of stiffness of low w/cm concretes in the freezethaw performance of microsphere concrete.
- Significant benefit of a lower w/cm was observed in both parts of the study by the lower mass losses for the microsphere concrete mixtures with 30% fly ash and w/cm in the range of 0.42 to 0.48 compared with the mass losses for mixtures with w/cm higher than 0.50.
- DF for the microsphere mixtures with w/cm < 0.50 were at least 98% after the standard 300 cycles of testing, and, therefore, would meet any specified durability factor in the commonly specified range of 60% to 95%.

Summary of Findings

- Microsphere concrete mixtures with fly ash contents up to 30% and w/cm in the range of 0.40 to 0.50 had high durability factors and good resistance to mass loss under the severe freeze-thaw exposure conditions represented in the ASTM C666 Procedure A test
- Microsphere concrete mixtures with fly ash contents up to 30% and w/cm in the range of 0.50 to 0.55 may be adequate for use in mild exposure conditions, such as the typical winter condition in North Carolina
- Microsphere concrete mixtures with 30% fly ash met the Class AA and Class B specification requirements of NCDOT for compressive strength and freeze-thaw durability at w/cm of 0.426 and 0.50, respectively
- The embodied carbon contents as measured by the calculated GWP values for the microsphere concrete mixtures with a 30% fly ash content are 11% to 18% lower than the GWP values for the corresponding conventional air-entrained concrete mixtures

Acknowledgments

- Clarke Summers, Brandon Ellis, Siva Sikhakolli UNC Charlotte
- Dustin Heiland Concrete Supply Co.

Supporting Publications

- Attiogbe, E.K., Cavalline, T.L., and Neuwald, A.D., "Lowering Carbon Footprint While Achieving Frost-Resistant Concrete," ACI Concrete International, V. 45, No. 5, May 2023, pp. 36-41.
- Attiogbe, E.K., "A New Way to Deliver Protection from Freezing-and-Thawing Damage," ACI Concrete International, V. 43, No. 1, Jan. 2021, pp. 27-33.
- Attiogbe, E.K., "Compliance Concept in Protection of Concrete from Freezing-and-Thawing Damage," ACI Materials Journal, V. 117, No. 6, Nov.-Dec. 2020, pp.187-200.
- Attiogbe, E.K., "Microspheres in Hardened Concrete," ACI Concrete International, V. 44, No. 3, Mar. 2022, pp. 43-50.
- Attiogbe, E.K., "Predicting the Magnitude of Microsphere Parameters obtained from Microscopical Examination of Hardened Concrete," ASTM Journal of Testing and Evaluation, V. 51, No. 5, Sept./Oct. 2023, pp. 3418-3434, https://doi.org/10.1520/JTE20220469
- Attiogbe, E.K., *Method of Delivery of Dry Polymeric Microsphere Powders for Protecting Concrete from Freeze-Thaw Damage*, U.S. Patent 10,730,794 B1, filed Sept. 30, 2019, and issued Aug. 4, 2020.

