High Early Strength Concrete Overlays: Oregon’s Approach

David Dobson, PE
Statewide Structural Materials Engineer
ODOT Structure Services

National Concrete Consortium
September 12th – 14th

Aging Infrastructure

Large number of structures 50 – 70 years old, in fair condition
National Research - Decks

National Concrete Pavement Technology Center – Concrete Infrastructure Research Database

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2023</td>
<td>Performance Evaluation of Polymer-Polymer Concrete Overlay: Continuous Improvement Proposal (Phase II)</td>
</tr>
<tr>
<td>December 2022</td>
<td>Low-Volume Concrete: Materials for Maintenance</td>
</tr>
<tr>
<td>August 2022</td>
<td>Concrete Mix Design for Partial-Depth Patching and Crack Extensions</td>
</tr>
<tr>
<td>May 2022</td>
<td>Fatigue Testing of Concrete Slabs to Determine Optimal Traffic Opening Time</td>
</tr>
<tr>
<td>December 2021</td>
<td>Fiber-Reinforced Concrete: Durability and Traffic Control</td>
</tr>
<tr>
<td>December 2021</td>
<td>Alternatives High Early Strength Concrete (HESC) Structural Analysis</td>
</tr>
<tr>
<td>September 2021</td>
<td>Enhancing the Durability of Bridge Decks by Incorporating Microsilica</td>
</tr>
<tr>
<td>August 2021</td>
<td>Use of Self-Compacting Concrete for Permanent Pavement</td>
</tr>
<tr>
<td>May 2021</td>
<td>Low-Cost Concrete Solutions for Bridge Decks and Railways</td>
</tr>
<tr>
<td>April 2021</td>
<td>Use of Cost-Effective Non-Propellant (PCP) Hybrids in Bridge Deck Repair</td>
</tr>
<tr>
<td>March 2021</td>
<td>Evaluation of Thin Polymer Overlays for Bridge Decks</td>
</tr>
<tr>
<td>February 2021</td>
<td>Investigation and Assessment of Low-Volume Patching Materials for Concrete Bridge Decks</td>
</tr>
<tr>
<td>February 2021</td>
<td>Inclusion and Performance of Supplementary Reinforcements in High Performance Concrete</td>
</tr>
<tr>
<td>November 2020</td>
<td>Advanced Analytical Techniques for Quantifying the Long-Term Effects of Unidentified Bridge Decks</td>
</tr>
</tbody>
</table>

Bridge Deck Maintenance

- **Material Selection**
 - Bridge Needs and Service Life
 - Project Scope, Budget, and Traffic Control
 - Material Limitations

Material Selection

- Polymers
 - Membranes
 - MPCO
 - PPC
 - Structural

- Deck Patching
McKenzie River Highway

Fish Hole Bridge
Br No. 13570
 Constructed 1972
McKenzie River Hwy
Blue River, OR

2012
40 years old

Photo Credit
Travel Oregon - Left
1859OregonMagazine, Mike Putnam - Center
1859OregonMagazine, Greg Vaughn - Right
Structural Overlay

- Need a structural overlay solution
- With or without hydrodemolition
- Standard High Performance Concrete – HPC4500 – ¾”
- 7 day wet cure = long closures
- Temp detour bridges and cross-overs are expensive,
 - Narrow bridges, adjacent traffic concerns
HESC Mix Design

- No existing LMC program
- Nation’s Mini-Mix & CTS Cement
 - CSA cement
 - ¾” aggregate
 - Macro fibers hand broadcasted into mix
 - CTS Low-P admixture, permeability reduction
 - Air entrained – but problematic
 - <1,000 coulombs permeability
 - <0.045% shrinkage
Project Details

Traffic Control
Two weekend full closures
Single lane work zone

Quantities
1000 sqyd deck area
56 cuyd HESC
Acceptance Criteria:

- 175 psi bond strength
- 4000 psi compressive strength
- ¼” over 12’ straightedge
Next Steps:

- Incorporate OSU research into Mix Design Methodology
- Update service life expectations
- Develop construction best practices
- Continue projects on a as-needed basis

Discussion

David Dobson, PE
Statewide Structural Materials Engineer
ODOT Structure Services

971.900.7118
david.dobson@odot.oregon.gov