High Early Strength Concrete Overlays: Oregon's Approach

David Dobson, PE Statewide Structural Materials Engineer ODOT Structure Services

> National Concrete Consortium September 12th – 14th

National Research - Decks

National Concrete Pavement Technology Center -Concrete Infrastructure Research Database

0	Title	End Date			
Sept	Performance Evaluation of Polyester Polymer Concrete Overlays Continuation Proposal—Phase II (TR-772)	July 2025			
Read	Low-Shrinkage Concrete Mixtures for Arkansas	December 2024			
oepv	Concrete Mix Designs for Partial-Depth Link Slabs and Deck Extension	August 2024			
	Real-Time Monitoring of Concrete Strength to Determine Optimal Traffic Opening Time	May 2024 Real-Time Monitoring of Concrete Strength to Determine Optim Opening Time			
	Fiber-Reinforced Concrete Overlays for Bridge Structures	December 2023			
	Alternative High Early Strength Concrete (HESC) Structural Overlays	December 2023			
	Enhancing the Durability of Bridge Decks by Incorporating Microencapsulated Phase Change Materials (PCMs) in Concrete	September 2023			
	Use of Sand Lightweight Concrete and All Lightweight Concrete to Improve Properties	August 2023			
	Low-Cement Concrete Mixture for Bridge Decks and Rails	May 2023			
	Performance of Cost-Effective Non-Proprietary UHPC in Thin Bonded Bridge Overlay	April 2023			
Deo	Evaluation of Thin Polymer Overlays for Bridge Decks	March 2023			
Nov	Investigation and Assessment of Effective Patching Materials for Concrete Bridge Decks	February 2023			
	Alternative Supplementary Cementitious Materials in Ultra-High Performance	February 2023			
	Concrete				
	SPR-4526: Predictive Analytics for Quantifying the Long-Term Cost of Defects During Bridge Construction	November 2022			

Date 🗸	Title
October 2022	Investigating Thermal Imaging Technologies and Unmanned Aerial Vehicles to Improve Bridge Inspections
ptember 2022	Repair or Strengthening of Bridge Decks with Partial-Depth Precast Deck Panels
ptember 2022	Sustainable nHPC Mixtures for Durable Overlay of Concrete Bridge Decks in Cold Regions: Proof of Concept
July 2022	Reducing Shrinkage Cracking in Bridge Decks Using the Single- and Double- Ring Test Methods
June 2022	Fiber Reinforced Concrete for Bridge Decks and Overlays
June 2022	Develop an Innovative Self-Healing Concrete Technology for Bridge Deck Life Extension
May 2022	Field Demonstration of GPR and UAV Technologies for Evaluation of Missouri River Bridge
May 2022	UHPC Thin Bonded Overlay on Deteriorated Bridge Decks
May 2022	Optimal Approach for Addressing Reinforcement Corrosion for Concrete Bridge Decks in Illinois
cember 2021	Effects of Concrete Cure Time on Epoxy Overlay and Sealant Performance
wember 2021	Ultra-High-Performance Concrete (UHPC) Used as a High Friction Surface Treatment (HFST) on Pavements and Bridges
July 2021	Fiber Reinforcement for Latex-Modified Concrete Overlays
June 2021	Evaluation of Chemical Solutions to Concrete Durability Problems
April 2021	Evaluation of Trigger Temperature for Concrete Pavement Growth Based on

	Tech Center
End Date 🚽	Title
March 2021	Reducing Shrinkage in Concrete Bridge Decks Using Single- and Double- Ring Test Methods
February 2021	Evaluation of Ultra-High-Performance Concrete for Use in Bridge Connections and Repair
December 2020	Service Life Design Guidance For UHPC Link Slabs
December 2020	Deep Learning Models for Bridge Deck Evaluation Using Impact Echo
December 2020	Bridge Decks: Mitigation of Cracking and Increased Durability—Materials Solution (Phase III)
December 2020	Bridge Decks: Mitigation of Cracking and Increased Durability-Phase III
December 2020	Bridge Deck Replacement of Posttensioned Concrete Box-Girder Bridges
November 2020	Review of Ultra-High Performance Concrete and Its Application in Bridge Engineering
November 2020	International Perspective on UHPC in Bridge Engineering
August 2020	Prototype System for Implementing the Ultrasonic Guided Wave Method on the Field

August 2020 Effect of Low Shrinkage Mix Designs to Reduce Early Cracking of Bridge May 2020 Field Performance of Low-Cracking Concretes for the Closure Pours and Overlays of Bridge Decks

April 2020 Optimizing Field Data Collection & Developing Advanced GPR Pro Modules

April 2020 Application of Internal Curing to Improve Concrete Bridge Deck Perfo March 2020 Time-Lapse Infrared Thermography Applied to Concrete Bridge Deck Inspection Surveys

Bridge Deck Maintenance	 Material Se Bridge Ne Project Sc Control Material L 	eds and Se ope, Budge imitations	ervice Life et, and Tra	ffic
		Polym	ers	
	Membranes	MPCO	PPC	Structural
		Deck Patching		

McKenzie River Highway

Structural Overlay

- Need a structural overlay solution
- With or without hydrodemolition
- Standard High Performance Concrete HPC4500 – ³/₄"
- 7 day wet cure = long closures
- Temp detour bridges and cross-overs are expensive,
 - Narrow bridges, adjacent traffic concerns

HESC Mix Design

• No existing LMC program

Nation's Mini-Mix & CTS Cement

- CSA cement
- ³⁄₄" aggregate
- Macro fibers hand broadcasted into mix
- CTS Low-P admixture, permeability reduction
- Air entrained but problematic
- <1,000 coulombs permeability
- <0.045% shrinkage

Mix Design b	y:			Contract	or Mix Design No.	: 55/45	
Cement Manufacturer		Source			Туре		
CTS		Rapid Set					
SCM Manufacturer		Source			Түре		
Slump (inches)	Coarse Agg Source	GSSD	Abs	DRUW	Coarse Agg Size	1	
5.5	20-232-3	2.69	2.0%	100.5	3/4" - #4	1623	
Air Content (%)							
3.5							
Density (lb/ft3)	Fine Agg Source	GSSD	Abs	FM	Fine Agg Size		
142.8	20-232-3	2.57	4.0%	2.81	#4 - 0	1265	
W/C Ratio							
0.46				Water Source	City	280	
Adm	Admixture Brand/Product		Туре			Dosage	
			Air-Entraining oz/yd3				
			V	VRA, High Range	oz/yd3		
		Specific Performance			oz/yd3		
		Retarding			oz/yd3		
			Fibers Ibs/yd3				

• Continue projects on a as-needed basis

Discussion

David Dobson, PE Statewide Structural Materials Engineer ODOT Structure Services

971.900.7118 david.dobson@odot.oregon.gov

