

National Concrete Consortium

Reducing the global warming potential (GWP) of concrete mixtures using intelligent mixture design

September 11-14th 2023 Burkan Isgor and Jason Weiss **Oregon State University**

A Reminder of Concrete

- 403.6 Million Metric Tons of concrete produced in 2022- US
- 12% Annual Increase in production volumes since 2015
- US Concrete Industry 56 billion dollars in revenue
- Average selling prices ~ \$139.80

https://concretefinancialinsights.com/us-concrete-industry-data Presented by Burkan Isgor and Jason Weiss © September

Page 2 of 29

Concrete Industry and GWP

- NRMCA worked with Athena to establish National and Regional LCA mixtures
- Compressive strength of a mixture has been related to the GWP
 - Compressive strength is at best incomplete
- Goal is to reduce this amount by some percentage
 - How does the producer begin to design mixtures with reduced GWP in an efficient & documented way ?

Presented by Burkan Isgor and Jason Weiss

September 11-14th 2023

450

400

350

300

250

200

150

100

50

0

2000

4000

6000

NRMCA member LCA Benchmarks V 3.0

Compressive Strength (psi)

8000

10000

Page 3 of 29

Global Warming Potential

(kg CO2e/cyd)

Homer Knows - It all Starts with Duff

Homer Knows - It all Starts with Duff

- Duff Abrams built on the work of Feret (strength is related to the volume of water and cement)
- w/c is converted to mass
- As an industry we move forward with this as an indicator of porosity
- Powers solidified this in the 1930s and 40s with his great work
- However, mixtures were water, cement, sand and rock

Presented by Burkan Isgor and Jason Weiss

© September 11-14th 2023

Page 6 of 29

Our Current Design Procedures are Dated

Concrete mixtures are proportioned empirically using antiquated technologies, new mixture proportions, and

binder compositions are difficult to evaluate without extensive testing.

Further accounting for carbon footprint throughout the life-cycle of concrete is not typically done.

Duff A. Abrams. A researcher in the area of organization and properties of concrete, he was responsible for coming up with the necessary methods for testing concrete characteristics that we still use. President of the American Concrete Association for a year, he discovered the concept of fineness modulus and

the definition of water-cement ratio.

World Famous Civil Engineer

Presented by Burkan Isgor and Jason Weiss

eptember 11-14th 2023

Modern Binders

"Most SCM and powder extenders have the potential to be used in concrete if a performance-based mixture proportioning procedure, which incorporates their chemical composition and reactivity, is followed."

Modern Binders

"Most SCM and powder extenders have the potential to be used in concrete if a performance-based mixture proportioning procedure, which incorporates their chemical composition and reactivity, is followed."

Off-spec SCMs (off-spec fly ash, natural pozzolans, slags, etc.); Alternative ashes (bottom ash, reclaimed ash, agricultural ash, etc.); LC Other industrial and natural products (pumice, under utilized clays, etc.); Powder extenders (limestone, etc.)

Presented by Burkan Isgor and Jason Weiss

© September 11-14th 2023

Too many ingredients and too many cooks

Presented by Burkan Isgor and Jason Weiss

Page 10 of 29

Presented by Burkan Isgor and Jason Weiss

Page 12 of 29

Concrete Application	Bridge Deck	Midwest Pavement	Foundation		
Exposure Class / Durability Requirement	ACI 318: F3, S0, W0, C2 Resistance to chloride ingress, corrosion, and FT	AASHTO PP-84 CaOxy and FT damage specified by SHA	ACI 318: F0, S1, W1, C0 Moderate sulfate and ASR resistance		
Strength (56-day)	5000 psi (34 MPa) (min)	4225 psi (29 MPa) (min)	4000 psi (27 MPa) (min)		
Slump	1-4 in (25-100 mm) 1-2 in (25-50 mm)		1-3 in (25-75 mm)		
F Factor (56-day)	375 (min)	375 (min) 270 (min)			
CH (56-day) 20g/100g binder (max) pH (56-day) 12.8 (min)		20g/100g binder (max)	N/A		
		N/A	13.6 (max)		
Time to Critical Sat	30 years (min)	30 years (min)	N/A		
sented by Burkan Isgor and Jason	Page 16 g				

	Examples	- Defining Per	rforma	ance			
		В	ottom Ash	(DOR* =	23%)		
	Concrete Application	Midwest Pavement	Component	Ash 3 (milled bottom ash)*			
	Exposure Class / Durability Requirement	AASHTO PP-84 CaOxy and FT damage specified by SHA	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO	42.3 16.8 7.0 21.2			., 2022
	Strength (56-day)	4225 psi (29 MPa) (min)	Na ₂ O	1.11			Aat.
	Slump	1-2 in (25-50 mm)	K ₂ O MgO	0.43			CI
	F Factor (56-dav)	270 (min)	SO3	0.4			l., ≜
	CH (56-day)	20g/100g binder (max)	P ₂ O ₅ LOI	0.54			et al
	pH (56-dav)	N/A	DOR*	24%			'aj €
	Time to Critical Sat	30 years (min)	Specific gravity	2.8			Bharadw
P	resented by Burkan Isgor and Jasor	n Weiss © Septembe	r 11-14 th 2023			Page 1	7 of 29

Concrete Application	Midwest Pavement	Component	Ash 3 (milled bottom ash)*	50 2	Ash 3 - 6% A	Air - 25% Paste	n (MPa)
Exposure Class / Durability Requirement	AASHTO PP-84 CaOxy and FT damage specified by SHA	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ CaO	42.3 16.8 7.0 21.2	45 - 40 - 35 -	20	20	
Strength (56-day)	4225 psi (29 MPa) (min)	Na ₂ O	1.11	25 up	~3	••	-
Slump	1-2 in (25-50 mm)	MgO	4.2	20- 02		20	
F Factor (56-day)	270 (min)	SO ₃	0.4	ar 15 - 35	30		
CH (56-day)	20g/100g binder (max)	LOI	2.5	10 -		25	-
pH (56-day)	N/A	DOR* Specific	24%	5 - 80	35	50	25
Time to Critical Sat	30 years (min)	gravity	2.8	0.35	0.4 (0.45 0.5	0.55
						aro	

Concrete	Midwest Pavement		Ash 3 (milled	50 +	Ash 3 - 6% Air - 25% Paste			
Application		Component	bottom ash)*	50		Ca(O	H) ₂ (g/100g _b	inder)
Exposure Class /	ΔΔΣΗΤΟ ΡΡ-84	SiO ₂	42.3	45 - 2	2	2		2
	CoOverand ET damage	Al ₂ O ₃	16.8	40 - 4	4	4		4
Durability	CaOxy and FT damage	Fe ₂ O ₃	7.0	35-6	6	6		6
Requirement	specified by SHA	CaO	21.2	8 30 - 9	8			8
Strength (56-day)	4225 psi (29 MPa) (min)	Na ₂ O	1.11	o	0	0		
Si vera		K ₂ O	0.43	ug 25	10	10	1	10
Slump	1-2 in (25-50 mm)	MgO	4.2	62 20	12	12		12
F Factor (56-dav)	270 (min)	SO ₃	0.4	≈ 15		14		4
		P ₂ O ₅	0.54	10	16	16		16
CH (56-day)	20g/100g binder (max)	LOI	2.5	10	18	18		18
pH (56-dav)	N/A	DOR*	24%	5 -	20	20	2	20
		Specific gravity	2.8	0	0.4	0.45	22	0.55
Time to Critical Sat	30 years (min)			0.35	0.4	0.45 w/b	0.5	0.55

Concrete Application	Midwest Pa	vement	50 Ash 3 - 6% Air - 25% Paste
Exposure Class / Durability Requirement	AASHTO PP-84 CaOxy and FT damage specified by SHA	Achieved	45 40 $\overline{z_{3}}$ $\overline{z_{3}}$ \overline
Strength (56-day)	4225 psi (29 MPa) (min)	39 Mpa	Selected w/b, Repl.
Slump	1-2 in (25-50 mm)	-	
F Factor (56-day)	270 (min)	451	۲۰ ۲۲ CH< 20g / ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲
CH (56-day)	20g/100g binder (max)	9.5	10 Mpg
pH (56-day)	N/A	~	0.35 0.4 0.45 0.5 0.55
Time to Critical Sat	30 years (min)	yes	w/b
Presented by Burkan Isgor and Jaso	n Weiss © Septe	ember 11-14 th 2023	Page 22 of 2

Different Ash - Different Performance

Midwest pavement mixtures

Presented by Burkan Isgor and Jason Weiss

© September 11-14th 2023

Page 23 of 29

Different Ash - Different Performance

Foundation mixture

Presented by Burkan Isgor and Jason Weiss

© September 11-14th 2023

Page 24 of 29

Mixture Optimization and GWP

- Compressive strength of a mixture has been related to the GWP
 - Compressive strength is at best incomplete
- Goal is to reduce this amount by some percentage
 - How does the producer begin to design mixtures with reduced GWP in an efficient & documented way ?

Presented by Burkan Isgor and Jason Weiss

© September 11-14th 2023

Mixture optimization

Component	PLC	SCM					900 -	
SiO ₂	20.30	48.20			100%	10%		
Al ₂ O ₃	4.80	19.10	SC	$CM + CH + H_2C$	60% 80% 80% ***			
Fe ₂ O ₃	3.30	5.70		1	8 400 - 60% 300 - 40% - 10			
CaO	63.50	14.60		1	/		200 20% 40%	HC
Na ₂ O _{eq}	0.51	0.78	Me	easure CH			0 20 40 60 80 100 120 140 160 180 200	> 220
MgO	0.80	3.80	Co	onsumed	Calcium Hydroxide Consumption (g/100 g SCM) $Q_{cc} - c_1 \cdot CH_{consumption}$			
SO₃	3.10	1.00					$DOR^* = \frac{c_0 - c_1 - c_2}{c_2}$	<u></u>
CaCO ₃	13.00	-		Component	Cost (\$/ton)	CO ₂ emiss	sions (kg CO ₂ /m ³)	1
Specific Gravity	3.09	2.66		PI C	140		2728	
(unitless)				SCM 1	120		74	
Blaine Fineness	405	350		Water	0		1	
(m²/kg)				Fine Agg.	15		6	
DOR*	N/A	43%		Coarse Agg.	15.5		8	
Presented by Burkan Isgor and Jason Weiss		anon manana						

Mixture optimization

Economic analysis of materials and social costs are considered and optimized:

Changing How we Look at GWP

- Current calculations are based on an A1 to A3 basis
- This method is simplistic and can result in implementing approaches that are short-lived and require many repairs driving up the GWP in the life of a structure
- GWO needs to be considered on a cradle-to-grave basis (A to D) to show long-term value
- Current empirical tools do not enable new materials & mixture design service life prediction
- Use in value-added products
- Use by agencies Presented by Burkan Isgor and Jason Weis

Summary

- Most SCM and powder extenders have the potential to be used in concrete if a performance-based mixture proportioning procedure, which incorporates their chemical composition and reactivity, is followed.
- These performance-engineered concrete mixtures can be further optimized for cost and/or carbon (GWP) using linear programming
- Very powerful tool for reducing GWP in practice and performing LCA.

Presented by Burkan Isgor and Jason Weiss

© September 11-14th 2023

Page 29 of 29

Approaches to Reduce GWP

