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Engineering, Dec. 2002
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Using Artificial Neural Networks 
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Personal Context: Research Focus Areas

• Smart, Sustainable, Durable, and Resilient Geosystems and Transportation Infrastructure systems 
• Analysis and Design of Transportation Infrastructure Systems
• Sustainable Construction Materials & Technologies
• Highways, Airfield Pavements, Paved & Unpaved Roads
• Advanced Health Monitoring & Management [using Smart Sensors & Systems and Unmanned Aerials Systems 

(UAVs)]
• NDT & NDE of Transportation Infrastructure Systems
• Intelligent Systems Engineering & Artificial intelligence (AI) Based Applications in Engineering
• Economic and Environmental Assessment including LCCA and LCBCA
• Geotechnical Aspects of Pavement Systems
• Performance Modelling of Paved/Unpaved Roads
• Characterization of Pavement/Geo-Materials
• Sustainable Winter Maintenance (e.g., Ice- and Snow-Free Pavement Systems)
• Education & Technology Transfer

5

Non-Destructive 
Testing & 
Evaluation

Sustainable 
Construction 
Materials & 

Technologies

Mechanistic-based 
Pavement Analysis 

& Design

Advanced Health 
Monitoring & 
Management

Intelligent Systems 
Engineering

Economic and 
Environmental 

Assessment

Highways, Airport 
Pavements, Paved 
& Unpaved roads

Education & 
Technology 

Transfer



Personal Context: Achievements/Impact 
Highlights 

• PI/Co-PI of 138 sponsored research projects 
– Approximately $25.2 million of project funds including matching funds
– Sponsored by the FHWA, the FAA, NSF, NCHRP, IA DOT, IHRB, MN DOT, MN LRRB, WI DOT, IL DOT, PCA, and 

other funding agencies 
• Over 410 peer-reviewed research publications authored and co-authored (~90% has been co-

authored with my graduate students and research staff) and two US patent applications (published 
and pending)

• Over 400 invited and technical lectures including over 150 invited talks  
• Over 7,300 citations and an h-index of 44 (as of November 2023 from Google Scholar)
• More than 40 news media/TV coverages (including NBC’s Today Show and NBC’s Nightly News with 

Lester Holt, Discovery Channel’s Daily Planet Show, The Weather Channel Live, Engineering News 
Record (ENR)  and so on) featuring Dr. Ceylan’s research 

• More than 30 national and international professional committees and organizations
• Have collaborated with over 100 researchers from over 30 institutions 
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On NBC’s TODAY Show 
& Nightly News 
with Lester Holt 
(January 26, 2018)
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Personal Context: Selected Concrete 
Pavements Related Projects

• Federal grants/National level projects
• Heated Airport Concrete Pavements
• Small Unmanned Aircraft System (sUAS) for 

Pavement Inspection
• Implementing a Multiple-Slab Response Model 

for Top-Down Cracking Mode in Rigid Airport 
Pavements

• Independent Review of the Recommended 
Mechanistic-Empirical Pavement Design Guide 
(MEPDG) and Software – New PCC Pavements

• Models for Predicting Reflection Cracking for 
Hot-Mix Asphalt Overlays on PCC Pavements

• Sensitivity Evaluation of MEPDG Performance 
Prediction

• Standard Definitions for Comparable Pavement 
Cracking Data

• Study Assessing the Impact to Concrete 
Pavement Smoothness from Curling, Warping 
and other Early-Age Behavior

• Concrete Pavement Mixture Design and 
Analysis

• State DOT/IHRB funded projects
• Implementing a Self-Heating, Electrically 

Conductive Concrete Heated Pavement 
System for the Bus Stop Enhancement 
Project in the City of Iowa City

• Self-Heating Electrically Conductive 
Concrete Demonstration Project

• “Prevention of Longitudinal Cracking in 
Iowa Widened Concrete Pavement

• Concrete Overlay Performance on Iowa’s 
Roadways

• Impacts of Internally Cured Concrete 
Paving on Contraction Joint Spacing”   

• Impact of Curling and Warping on 
Concrete Pavement

• Embedded Micro-Electromechanical 
Sensors and Systems (MEMS) for 
Monitoring Highway Structures and for 
Infrastructure Management

• Performance Evaluation of Concrete 
Pavement Granular Subbase

• Design and Construction Procedures for 
Concrete Overlay and Widening of 
Existing Pavements
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Outline

• Introduction: Fundamentals of Concrete and Artificial 
Intelligence (AI)

• Advent of AI in Concrete Science and Technology 

• Applications of AI in Concrete Design and Construction 

• Case Studies and Success Stories: Dr. Ceylan’s Research 
on Use of AI for Concrete Pavement Systems  

• Summary
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Concrete

• Concrete components
– Cement
– Water
– Coarse aggregate
– Fine aggregate
– Supplementary cementing materials
– Chemical admixtures

9(Image source: PCA) 



Applications for Concrete

10(Source: PCA 2010) 



Applications for Concrete (Cont’d)

11(Image source: PCA) 



Concrete Design 

• Material design
– Designing and 

proportioning concrete 
mixtures 

• Structural design
– Designing dimensions of 

concrete structure 
elements and other 
requirements for intended 
use, e.g., AASHTOWare 
Pavement ME Design and  
AASHTOWare Bridge

12(Image source: PCA and AASHTO) 



Concrete Construction 

• General steps for 
construction 
– Preparation before 

placing
– Depositing concrete
– Consolidation
– Finishing
– Jointing
– Patching and cleaning 

concrete

13(Image source: PCA) 



Challenges in Concrete Design and 
Construction 

• A lot of variables
– Local material properties 
– Various load types 
– Climatic conditions
– Construction methods
– Geometrics 
– Cost
– Sustainability
– Resilience
– And many others 
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Paradigm Shift on Concrete Design and 
Construction

15(Image source: Li et al. 2022) 

https://www.nature.com/articles/s41524-022-00810-x


Artificial Intelligence (AI)

• Artificial Intelligence (AI) is the science of making 
things smart/intelligent

• It can be defined as:
“Human intelligence exhibited by machines”

• AI is a broad term for getting computers to perform 
human tasks
– The scope of AI is disputed and constantly changing over 

time

16(Reference: Mayes 2017) 



AI: The Past

17(Reference: Samanta 2021) 



AI: The Present

• AI can be general or narrow

• The systems implemented today are a form of 
narrow AI

• A system that can do just one or a few defined things 
as well or better than humans, such as recognizing 
objects/gestures we trained* it to learn
– *needs code written by humans to create a system capable 

of learning that thing

18(Reference: Mayes 2017) 



AI: Common Use Cases

• Typical ‘narrow’ tasks include;
– Vision
– Natural language processing
– Planning
– Object recognition (e.g., vacuum cleaners)
– Speech recognition/sound detection
– Translation between languages
– Prediction (given some inputs, what is the 

expected output for unseen examples)
– Restoration/Transformation
– State-of-art smart cars
– Self-driving cars
– Personal assistant robots, so on…

19(Reference: Leshchinskiy 2021) 



AI: Types

20(Image Source: https://www.greatillustrations.top/ProductDetail.aspx?iid=155812016&pr=42.88 ) 



AI: Types (Cont’d)

• AI, ML, and DL are sometimes used interchangeably but there are 
distinctions

• Differences among AI, ML and DL
– The term AI, coined in the 1950s, refers to the simulation of human intelligence by 

machines. It covers an ever-changing set of capabilities as new technologies are 
developed. Technologies that come under the umbrella of AI include ML and DL.

– ML, which began in 1970s, is a form of AI based on algorithms that are trained on 
data. ML enables software applications to become more accurate at predicting 
outcomes without being explicitly programmed to do so. ML algorithms use 
historical data as input to predict new output values. This approach became vastly 
more effective with the rise of large data sets to train on. 

– DL, a subset of ML, is based on our understanding of how the brain is structured. 
DL uses neural networks —based on the ways neurons interact in the human 
brain—to ingest data and process it through multiple iterations that learn 
increasingly complex features of the data, including self-driving cars and ChatGPT.

21(Reference: Burns n.d., McKinsey & Company n.d.) 



AI: ML

22

• ML can perform many tasks:
1. Classification

2. Clustering

3. Regression

• There are 3 types of learning:
1. Supervised

2. Unsupervised

3. Reinforcement learning

(Reference: Leshchinskiy 2021) 



AI: ML (Cont’d)

23

• Supervised vs. unsupervised methods
– Consideration: Categorical vs continuous data

(Reference: Forsberg n.d.) 



AI: ML (Cont’d)

• Many ML algorithms

24(Reference: Forsberg n.d.) 



AI: The Future

• Self-driving vehicles and safer transportation 
• Augmenting human abilities
• Increased penetration in daily life activities, and so 

on…

25(Image Source: https://www.laityetn.top/ProductDetail.aspx?iid=382717034&pr=39.88) 
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Intelligence (AI)
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Advent of AI in Concrete Science and 
Technology 

• Various AI technologies have been explored and used 
in the field of concrete science and technology 
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Advent of AI in Concrete Science and 
Technology (Cont’d)

28(Reference: Moein et al. 2022)

https://www.sciencedirect.com/science/article/pii/S2352710222014504


Advent of AI in Concrete Science and 
Technology (Cont’d)

• In the late 1980s, Adeli and Paek (1986) proposed using AI technology in concrete 
construction

• Adeli and Yeh (1989) created a perceptron model to guide the design of concrete
– Prototype artificial neural network (ANN) to predict concrete compressive strength

• Earliest article identified in connection to concrete and ML was published in 1992 
– Impact-Echo Signal Interpretation Using Artificial Intelligence by Pratt et al. (1992) 

• Number of publications remained relatively low until 2010 but dramatically  
increased in 2020s

29(Reference: Li et al. 2022, Hu et al. 2021, Kazemi 2023 )

https://www.nature.com/articles/s41524-022-00810-x
https://www.jstage.jst.go.jp/article/jact/19/8/19_924/_pdf/-char/ja


Advent of AI in Concrete Science and 
Technology (Cont’d)

30(Reference: Moein et al. 2022)

https://www.sciencedirect.com/science/article/pii/S2352710222014504


Advent of AI in Concrete Science and 
Technology (Cont’d)

31(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


32(Hu et al. 2021)

Advent of AI in Concrete Science and 
Technology (Cont’d)



33

• Prediction of 
– Strength
– Elastic modulus
– Flowability
– Setting behavior
– Hydration reactions
– Cement manufacturing process optimization
– Mix design optimization
– Pore structure analysis
– Aggregate shape identification
– Fiber distribution evaluation
– Crack detection
– Quality control for concrete admixture 

manufacturing or 3D concrete printing
– Durability prediction such as permeability, 

Freeze-thaw durability, chloride diffusion, alkali-
silica reaction, corrosion, sulfate attack

(Reference: Li et al. 2022, Moein et al. 2022)

Artificial Neural Networks (ANNs) 

https://www.nature.com/articles/s41524-022-00810-x
https://www.sciencedirect.com/science/article/pii/S2352710222014504


Support Vector Machine (SVM)

34

• Prediction of 
– Strength
– Elastic modulus
– Flowability
– Elastic constant of C-S-H
– Creep
– Mix design optimization
– Identification of fiber failure mode
– Crack detection
– Quality control for concrete admixture 

manufacturing or 3D concrete printing
– Durability prediction such as 

permeability, Freeze-thaw durability, 
chloride diffusion, alkali-silica reaction, 
corrosion, sulfate attack

(Reference: Li et al. 2022, Moein et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
https://www.sciencedirect.com/science/article/pii/S2352710222014504


Decision Tree (DT)

35

• Prediction of 
– Strength
– Elastic modulus
– Flowability
– Elastic constant of C-S-H
– Creep
– Shrinkage
– Void detection
– Crack detection
– Chloride concentration

(Reference: Li et al. 2022, Moein et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
https://www.sciencedirect.com/science/article/pii/S2352710222014504


Random Forest (RF)

36

• Prediction of 
– Strength
– Elastic modulus
– Flowability
– Setting behavior
– Cement hydration kinetics
– Creep
– Shrinkage
– Void detection
– Crack detection
– Chloride concentration
– Thermal properties
– Mix design optimization
– Aggregate shape identification

(Reference: Li et al. 2022, Moein et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
https://www.sciencedirect.com/science/article/pii/S2352710222014504


Deep Learning (DL)

37

• Equipment tracking in construction sites

• Construction site management
– Locating workers onsite
– Detecting worker unsafe behavior
– Analyzing construction safety
– Classifying accident reports
– Detecting worker compliance with PPE
– Hardhat usage
– Worker physical loading
– Detecting structures and information onsite

• Crack detection
– Detection, classification, and localization of 

cracks

(Reference: Khallaf and Khallaf. 2021 ; Guo et al. 2020; Park et al. 2020)

https://www.sciencedirect.com/science/article/pii/S0926580521002119
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Applications of AI in Concrete Design and 
Construction

• Application types 
– Material characterizations
– Concrete mix design
– Quality control and inspection
– Project management and scheduling
– Structural optimization
– Structural condition assessment and health monitoring
– And many others 

39



Applications of AI in Concrete Design and 
Construction (Cont’d)

• In concrete technology which deals with the study of 
concrete materials characterization, fresh and hardened 
properties, behaviors, and its applications, AI has been 
used extensively to evaluate, predict and model the 
properties of fresh, hardening, and hardened concrete

• Not only that, but it has also been applied to optimizing 
environmentally friendly materials used to replace 
cement using a prediction technique of the impact of 
adding these materials, such as fly ash on the 
performance of concrete

40(Reference: Gamil 2023)  



Applications of AI in Concrete Design and 
Construction (Cont’d)

• Areas of AI application in various concrete 
technologies

41(Reference: Gamil 2023)  



Applications of AI in Materials Characterization

• Importance-based AI feature 
to define the aggregate size 
distribution using a measured 
3D binocular system
– Step 1: Image acquisition
– Step 2: Converting the images 

into 3D objects
– Step 3: Sketching map of 3D 

features and converted to 
defined volumes

– Step 4: Sketching 2D 
symmetrical features and the 
data used to run machine 
learning for aggregate size 
estimation 

42(Reference: Sun et al. 2021)  



Applications of AI in Materials Characterization 
(Cont’d)

• Method of pattern recognition for shape 
characterization

43(Reference: Zheng and Hryciw, 2018)  



44

• Grading curve of the aggregates is usually determined from small 
random batch-samples
– Unknown variations of the aggregate’s grading curve

• Increased cement → Increased cost

• Cameras tracks the total amount of aggregates used and generate 
gradation curve based on CNN & image processing

(Reference: Hasit et al. 2022)

Applications of AI in Materials Characterization 
(Cont’d)

https://www.ipi.uni-hannover.de/fileadmin/ipi/publications/2022/fib_Oslo_Digitization_out.pdf
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• Determine composition in near real time and in an 
automated way

• A validation accuracy of 97% for classifying images of grain

(Reference: Hoong et al. 2020)

Applications of AI in Materials Characterization 
(Cont’d)

https://www.sciencedirect.com/science/article/pii/S0926580519315456


Applications of AI in Concrete Mix Design

• Development of appropriate mix design is a time-consuming and 
cost-incurred process

• AI and ML techniques have been used to develop the mix designs 
based on collective historical data (Esmaeilkhanian et al. 2017,  
Ziolkowski and Niedostatkiewicz 2019, Chaabene et al. 2020)

• The process utilized historical data to predict the best and wanted 
mix design with the stipulated performance requirements
– For example, Ziolkowski and Niedostatkiewicz (2019) used AI and ML to 

develop a mix design based on extensive databases of concrete recipes
– Data was used to feed the optimal architecture of neural networks, which 

resulted into development of an equation enabling the prediction of mix 
design and compressive strength as a performance indicator

46



• Predictive models 
– To examine relationships between the mixture design 

variables and strength
– To develop an estimate of the (28-day) strength
– To design optimal concrete mixtures that minimize cost 

and embodied CO2

47(Reference: Young et al. 2019)

Applications of AI in Concrete Mix Design 
(Cont’d)

https://www.sciencedirect.com/science/article/pii/S0008884617313807


• Ziolkowski and Niedostatkiewicz (2019) 

48Input contribution The scatter plots target versus input variable

Block diagram of the practical 
application of machine learning in 

the concrete mix design

Applications of AI in Concrete Mix Design 
(Cont’d)



• Proportioning and 
Optimization of FRC Mixes 
(OptiFRC) 
– Compiled  an exhaustive 

database of FRC mix 
proportioning and their 
properties

• To analyze their variability 
using data mining 
techniques

• To develop robust models 
for estimating the residual 
flexural strength

• To implement these 
developments in an 
optimization tool 

49(Reference: Emilio Garcia-Taengua. 2020)

Applications of AI in Concrete Mix Design 
(Cont’d)

https://link.springer.com/chapter/10.1007/978-3-030-58482-5_73


50(Reference: Fan et al. 2021)

• UHPC with dense particle packing system can be developed by the 
combined use of MAA model and Genetic Algorithm based Artificial 
Neural Network

Applications of AI in Concrete Mix Design 
(Cont’d)

https://www.sciencedirect.com/science/article/pii/S0958946521002390


Applications of AI in Quality Control and 
Inspection

51

• Offline quality inspection of fresh concrete 
– Uses empirical test methods
– On small batch samples of the concrete
– Limited control of the concrete properties remains possible

• Online quality assessment during the mixing process enables 
– Real-time control of the concrete properties 
– Prompt reaction on potential deviations from the target properties

• Current technology measures the dynamic viscosity only
– Coarse consistency estimations based on the electrical energy consumption of the mixer
– Not sufficient for a precise derivation of the complex rheological properties of fresh concrete

• Yield stress
• Plastic viscosity
• Thixotropy
• Sedimentation and bleeding behavior or setting behavior

• Deep learning can be developed based on 3D image data of the flowing concrete in the mixer to 
produce values for viscosity and yield stress

– Adjust the concrete towards its target rheological properties

(Reference: Hasit et al. 2022)

https://www.ipi.uni-hannover.de/fileadmin/ipi/publications/2022/fib_Oslo_Digitization_out.pdf


52

• Fast determination of the fresh concrete properties on the construction site is required
– Current techniques

• Correlating the energy consumption for rotating the mixing drum of a truck mixer to values obtained 
by rheometer tests

• Using a concrete mixing truck itself as a rheometer
– Substantial technical modifications on the mixing truck required

• Batch-based methods such as the slump or slump flow test are predominant
– Surface topography and other surface features of the spread out fresh concrete yield an abundance of 

additional information

• Photogrammetric computer vision and CNN based algorithms, can correlate optical patterns with 
concrete rheological properties

– Actual composition can be derived from a single image of the slump cake

(Reference: Hasit et al. 2022)

Applications of AI in Quality Control and 
Inspection (Cont’d)

https://www.ipi.uni-hannover.de/fileadmin/ipi/publications/2022/fib_Oslo_Digitization_out.pdf


53

• Computer vision for real-time extrusion quality monitoring and control in robotic 
construction

• Automatically adjust the extrusion rate based on the vision system feedback

• Self-regulating extrusion system able to continuously print layers of acceptable 
dimensions using any printable mixture, without the need for prior calibration and 
despite some mixture rheology variations

(Reference: Kazemian et al. 2022)

Applications of AI in Quality Control and 
Inspection (Cont’d)

https://www.sciencedirect.com/science/article/pii/S0926580518307751?via%3Dihub


54(Reference: Pal and Hsieh. 2021)

AI-based visual data analytics applications 
in Project management

Applications of AI in Project Management and 
Scheduling 

https://www.sciencedirect.com/science/article/pii/S0926580521003435


55

• Common  modeling  methods  for construction  planning 
– Linear  scheduling  (LS)
– Critical path  method  (CPM)
– Discrete-event  simulation  (DES)

• When  the  constraints  and  dimensionality  of  a  planning  problem  increase, traditional  methods  
are  cumbersome  and  struggle  to  accurately  reflect  decision  options

• Deep  learning  artificial  intelligence  (AI)  methods  can more   rapidly   review   and   recommend   
more   planning   options   for scheduling complex construction projects

(Reference: Hatami et al. 2021)

Applications of AI in Project Management and 
Scheduling (Cont’d) 

https://ascelibrary.org/doi/epdf/10.1061/9780784483893.143


56

• AI model and video dataset for unsafe action 
identification in projects

(Reference: Yang et al. 2023)
Sample frames for seven action classes of dataset

Applications of AI in Project Management and 
Scheduling (Cont’d) 

https://www.sciencedirect.com/science/article/pii/S0926580522005738


57(Reference: Liu et al. 2022)

• AI-based data analytics for safety in concrete 
construction

Applications of AI in Project Management and 
Scheduling (Cont’d) 

https://www.sciencedirect.com/science/article/pii/S0926580522001753


• AI has been used for 
concrete structural 
component detection 

• For example, Son et al. 
(2012) used AI and ML to 
detect concrete on-site 
using automated color 
model images with neural 
networks, and that helped 
to measure the construction 
process and monitor the 
structural health

58

Construction-site images (left) V.S. 
AI and ML-based concrete detection 

results (right) 

Applications of AI in Project Management and 
Scheduling (Cont’d) 



Applications of AI and ML in Concrete 
Structural Design

• Research publications on the use of different AI 
branches in structural engineering

59(Reference: Salehi and Burgueño 2018) 



Applications of AI and ML in Concrete 
Structural Design (Cont’d)

• Applications of AI, ML, and DL in concrete structural 
engineering

60(Reference: Salehi and Burgueño 2018) 



Applications of AI and ML in Concrete 
Structure Health Monitoring

• In structural health monitoring, image processing 
techniques (IPTs) are mainly used to process images to 
extract defect features, such as cracks on concrete and 
steel surfaces

• Vision-based autonomous detection of concrete surface 
defects is significant for efficient maintenance of 
infrastructures

• For example, Zhang et al. (2017) proposed a  
Convolutional Neural Network (CNN)-based architecture, 
named as CrackNet, for the automatic detection off 
cracks

61



Applications of AI and ML in Concrete 
Structure Health Monitoring (Cont’d)

• Typical testing images correctly classified by 
CrackNet (Zhang et al. 2017)

62



Applications of AI and ML in Concrete 
Structure Health Monitoring (Cont’d)

• ML method for crack pattern and propagation 
detection (Bayar and Bilir 2019)

63



Applications of AI and ML in Assessment of 
Service Life 

• Assessment of durability and service life of 
reinforced structure 

64(Reference: Taffese and Sistonen, 2017)  
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Ceylan’s Ph.D. Dissertation in 2002  

• Supervised by Professors Erol 
Tutumluer and Ernest J. Barenberg 
at the University of Illinois at 
Urbana Champaign (UIUC)

• Professor Jamshid Ghaboussi of 
University of Illinois, referred to 
my Ph.D. research 
accomplishment as “the first ever 
successful application at this 
scale of using Artificial Neural 
Networks (ANNs) as surrogate 
structural analysis models to 
replace complex and 
sophisticated finite element 
solutions.” 

66



Dr. Ceylan’s Research on Use of AI for Concrete 
Pavement Systems 

• Dr. Ceylan’s early research at the UIUC in 2000s and the 
continuation of that work at ISU has provided a significant basis for 
the introduction of AI and ML techniques to the analysis and design 
of concrete pavement systems, including 

– Analysis and design of concrete pavement systems using ANNs
– Nondestructive structural assessment of concrete pavements using ANNs
– Implementing a multiple-slab response model for top-down cracking 

mode in rigid airport pavements
– AI for predicting PCC overlay performance
– Development of Iowa Pavement Analysis Technique (IPAT) 
– Use of Small Unmanned Aircraft Systems (sUAS) and ML/DL for Airport 

pavement inspection and rating
– Use of AI for predicting concrete compressive strength
– Several of Dr. Ceylan’s ANN models are embedded in the MEPDG/ 

AASHTOWare Pavement ME Design software system
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Analysis and Design of Concrete Pavement 
Systems Using ANN

• Objectives
– Develop an easy-to-use ANN-based concrete pavement 

analysis toolbox for routine practical design (Mechanistic –
Empirical Based Design Methodology)

– Employ ANNs as structural models to simulate 
sophisticated finite element (FE) analyses
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Analysis and Design of Concrete Pavement 
Systems Using ANN (Cont’d)

• Methodology
– Train ANN models to solve for concrete slab stresses and 

deflections Under:
• Various standard aircraft gear configurations, including 

B-777
• Multiple wheel loadings for general gear configurations 
• Climatic & simultaneous loadings
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BOEING 777 (1995)
Gross Load 632,000 lbs
440 passengers

A380-800 (2004-2006)
Gross Load 1.24 million lbs
555 passengers



Analysis and Design of Concrete Pavement 
Systems Using ANN (Cont’d)

• Graphical representation of ANN toolbox concept
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Analysis and Design of Concrete Pavement 
Systems Using ANN (Cont’d)

• ANN architecture examples 

71



Analysis and Design of Concrete Pavement 
Systems Using ANN (Cont’d)

• ANN prediction examples  
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Analysis and Design of Concrete Pavement 
Systems Using ANN (Cont’d)

• ILLI-N Design Tool
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Nondestructive Structural Assessment of 
Concrete Pavements Using ANN

• Objectives
– To develop ANN-based models for nondestructively 

assessing the condition of the concrete (rigid) pavement 
systems. 

– The backcalculated layer properties are:
• Concrete pavement layer modulus (Epcc)
• Coefficient of subgrade reaction (ks)
• Radius of relative stiffness (l)
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Nondestructive Structural Assessment of 
Concrete Pavements Using ANN (Cont’d)

• Falling Weight Deflectometer

75



Nondestructive Structural Assessment of 
Concrete Pavements Using ANN (Cont’d)

• A deflection basin obtained from FE analysis 
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Nondestructive Structural Assessment of 
Concrete Pavements Using ANN (Cont’d)

• ANN-based backcalculation models
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Nondestructive Structural Assessment of 
Concrete Pavements Using ANN (Cont’d)

• I-BACK: Iowa’s Intelligent Pavement Backcalculation 
Software 
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Subgrade Support

LOAD

Maximum Stress
Bottom of Slab

Multiple-Slab Response Model for Top-Down 
Cracking Mode in Rigid Airport Pavements
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Design Inputs

3D-FEM analysis

•Design life (years)

•Concrete flexural strength 

•Structural layer data (type and 

thickness)

•Subgrade modulus (k or E)

•Airplane traffic mix (type, weight, 

frequency)

Calculate cumulative 
damage factor (CDF) 

for each aircraft

Concrete layer thickness

Total 
CDF=1

Iterates on the 
concrete layer 

thickness 
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Subgrade Support

LOAD

Maximum Stress
Bottom of Slab

• Proposed FAA rigid pavement design

Multiple-Slab Response Model for Top-Down 
Cracking Mode in Rigid Airport Pavements 

(Cont’d)
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Design Inputs

Surrogate critical 
response model

Calculate CDF 
(for each aircraft)

Concrete layer thickness

Total 
CDF=1

Iterates on the 
concrete layer 

thickness 
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• Enable faster 3D-FE computations 
of design stresses in FAARFIELD 2.0 
making it suitable for routine design
• Pavement foundation response and 
moduli prediction models
• Enable using 9-slab pavement 
structure without increasing 
computational time
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Multiple-Slab Response Model for Top-Down 
Cracking Mode in Rigid Airport Pavements 

(Cont’d)

• Methodology
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FEAFAA/NIKE3D-FAA Finite 
Element Batch Run Automation 

Tools

ANN-Based Surrogate Critical 
Response Models Development 

Tool

4,000 FE runs for each airplane

Post-Processing Automation Tools Inputs-outputs (critical responses) data 
spreadsheets

Most accurate ANN models from 6,000 
models for each airplane

FAA ANN Rigid Pavement Analysis 
Tool

(ANNFAA)

σXX-Max-Top-Tens., σYY-Max-Top-Tens., 
σ1-Max-Top-Tens.

Outcomes of the Study



Multiple-Slab Response Model for Top-Down 
Cracking Mode in Rigid Airport Pavements 

(Cont’d)
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Multiple-Slab Response Model for Top-Down 
Cracking Mode in Rigid Airport Pavements 

(Cont’d)

• ANN model performance accuracy

83

 

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

A
N

N
 M

od
el

 P
re

di
ct

io
n 

(p
si)

σXX-Max-Top-Tens. - NIKE3D Solutions (psi)

Training
Testing
Validation
Independent Testing

RMSETraining = 27.7
RMSETesting = 28.3
RMSEValidation = 33.7
RMSEInd.Testing = 33.2
R2

Training = 0.951
R2

Testing = 0.954
R2

Validation = 0.929
R2

Ind.Testing = 0.925

B777-300 ER 

 

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

A
N

N
 M

od
el

 P
re

di
ct

io
n 

(p
si)

σXX-Max-Top-Tens. - NIKE3D Solutions (psi)

Training
Testing
Validation
Independent Testing

RMSETraining = 6.4
RMSETesting = 12.1
RMSEValidation = 10.7
RMSEInd.Testing = 8.3
R2

Training = 0.968
R2

Testing = 0.908
R2

Validation = 0.920
R2

Ind.Testing = 0.947

B777-300 ER 

Mechanical Loading Mechanical + Temperature Loading



Multiple-Slab Response Model for Top-Down 
Cracking Mode in Rigid Airport Pavements 

(Cont’d)

• ANNFAA: FAA ANN rigid pavement analysis tool
– ANNFAA vs. FEAFAA
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ANNFAA FEAFAA





Captured with Snagit 2018.2.1.1590  
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Portland cement concrete (PCC) Overlays1,2

1,289 PCC overlay sections in 
46 states in the US before 2017

About 40% -- in Iowa!

Challenge: complex pavement systems
– Pavement structural design features, 
– Pavement history, 
– Pavement condition measures, 
– Traffic volume information, and 
– Material properties. 

Solution: Based on these collected condition 
data, pavement remaining  service life (RSL) and 
required treatment can be estimated. 

AI for Predicting PCC Overlay Performance
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AI for Predicting PCC Overlay Performance 
(Cont’d)
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148 road sections (1,284 data points)

• The prediction model was trained using Levenberg-Marquardt ANN 
algorithms with a hyperbolic tangent activation function 

Schematic of a typical ANN architecture

AI for Predicting PCC Overlay Performance 
(Cont’d)
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Input and output parameters used in 
ANN Model development – IRI pred.

Input ranges used in developing 
and testing ANN models

• 6-15-1 
ANN 
Model 
Results

AI for Predicting PCC Overlay Performance 
(Cont’d)



Development of Iowa Pavement Analysis 
Technique (IPAT) 

• Overview: pavement deterioration and remaining 
service life (RSL/RSI) model development stages

89

• Pavement Structure
• Traffic
• Age

Pavement Condition 
(Distresses/Smoothness)

Pavement 
Performance Models 

are Developed

Future Pavement 
Condition Predictions 
(Distresses/Smoothness)

Using Developed 
Pavement 

Performance Models

Estimated RSL

Using RSL Models and 
Corresponding FHWA-

defined Threshold 
Limits for Performance 

Indicators

Project-Level Network-Level



Development of IPAT (Cont’d) 

• A set of AI models were developed for each distress 
type as well as IRI predictions for various Iowa 
pavement types, including JPCP and PCC overlay

• Microsoft Excel Macro based network-level 
pavement deterioration prediction automation tool 
was developed that predicts future pavement 
performance using optimized AI models
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Development of IPAT (Cont’d) 

91
Comparisons between measured pavement condition records and ANN model predictions for a JPCP 

pavement section as an example (IA 5, MP 85.24 to 88.06, N, Traffic (AADTT): 799, Construction year: 1999)

Transverse cracking IRI (approach 1) IRI (approach 2) 

Comparisons between measured pavement condition records and ANN model predictions for JPCP pavements

Example of accuracy evaluations : JPCP



Development of IPAT (Cont’d) 

• IPAT tool interface including navigation panel (left), 
sub-tool for pavement performance prediction (top 
right), and performance predictions over time 
(bottom right)
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Use of sUAS and ML/DL for Airport Pavement 
Inspection and Rating

• Motivation
– Routine airfield pavement 

inspections are crucial for 
maintaining safe and 
serviceable airfield pavement

– Current practice for airport 
inspections relies on visual 
surveys and manual 
interpretation

– sUAS has attracted attention as 
cost-effective and efficient 
pavement inspection tools
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LTD Cracks

DJI Drone



Use of sUAS and ML/DL for Airport Pavement 
Inspection and Rating (Cont’d) 

• Methodology
– ML and DL models been widely used for object detection
– There is a scope of applying ML and DL on drone data for 

pavement distress such longitudinal, transverse, and 
diagonal cracks detection and assist traditional pavement 
inspection 
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ML/DL models

sUAS Image LTD crack location



Use of sUAS and ML/DL for Airport Pavement 
Inspection and Rating (Cont’d) 

• Data collection using sUAS
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Use of sUAS and ML/DL for Airport Pavement 
Inspection and Rating (Cont’d) 

• ML and DL model development 
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Image split into 4m x 3 m size sUAS collected color image Data cleaning

AnnotationData augmentationTrain, Test, & Validation dataset

Data annotation



Use of sUAS and ML/DL for Airport Pavement 
Inspection and Rating (Cont’d) 

• Results
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Use of AI for Predicting Concrete 
Compressive Strength

• Objectives
– Concrete compressive strength is a highly nonlinear 

function of age and ingredients 
– Ingredients include - cement, blast furnace slag, fly ash, 

water, superplasticizer, coarse aggregate, and fine 
aggregate

– Use AI models to predict concrete compressive using 
ingredients and age
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Use of AI for Predicting Concrete 
Compressive Strength (Cont’d)

• AI models utilized 
– Linear regression
– Decision Tree Regression
– Random Forrest Regression
– ANN with Levenberg–Marquardt algorithm
– Data contained 

• Inputs: Cement Amount, Blast Furnace Slag, Fly Ash, 
Water, Superplasticizer, Coarse Aggregate, Fine 
Aggregate, and Age

• Output: Compressive Strength
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Use of AI for Predicting Concrete 
Compressive Strength (Cont’d)

• Results summary

100

Model + Properties Train R2 Test R2 Validation R2

Linear regression 0.60 0.66 0.66

Decision Tree Regression  0.91 0.84 0.79

Random Forrest Regression 0.98 0.90 0.89

ANN models developed with 
using Levenberg–Marquardt 
algorithm (MLPs)

0.99 0.96 0.98



Use of AI for Predicting Concrete 
Compressive Strength (Cont’d)

• Results: Linear Regression Model
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Use of AI for Predicting Concrete 
Compressive Strength (Cont’d)

• Results: Decision Tree (max-depth 7)
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Use of AI for Predicting Concrete 
Compressive Strength (Cont’d)

• Results: Random Forest (20-trees)
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Use of AI for Predicting Concrete 
Compressive Strength (Cont’d)

• Results: ANN with Levenberg–Marquardt Algorithm
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Outline

• Introduction: Fundamentals of Concrete and Artificial 
Intelligence (AI)

• Advent of AI in Concrete Science and Technology 

• Applications of AI in Concrete Design and Construction 

• Case Studies and Success Stories: Dr. Ceylan’s Research 
on use of AI for Concrete Pavement Systems  

• Summary
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Summary: Overall

• AI shows promise for use for investigating, modelling, 
and generally achieving better understanding of 
complex and non-linear engineering problems and 
mechanisms, even for some that have not yet been 
well understood or formulated 

• The high potential of AI techniques in solving 
resource-intensive complex problems has led to 
increased interest in using these methods in various  
engineering areas
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Summary: Overall (Cont’d)

• Over recent decades, use of AI technique has been 
popular both in research and industrial applications 

• AI has been used in a wide variety of concrete 
science and technology associated with design, 
construction, and asset management applications 
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Summary: Benefits and Advantages

• Prediction of target properties 
• Increase accuracy
• Improvement and acceleration of computational 

simulations
• Automation
• Risk mitigation
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Summary: Challenges

• Data challenge
– Data sparsity
– High dimensionality
– Data bias

• Validation challenge
– Hold-out method
– Cross-validation

• Interpretability challenge
– Diagnostics
– Causality

• Sharing data and tools

• Linking laboratory and field data
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Summary: Direction for Practitioners to Use AI  

• Starting with simple models
– Simpler models with fewer coefficients or assumptions are preferable to 

complex one
– Prediction accuracy and the data accuracy
– Complex models with less interpretability may only be utilized when 

additional accuracy gain is significant and necessary

• Knowing when to trust a model
– Consensus on when to trust the models needs to be reached
– Reported performance measures (e.g., accuracy) of AI models should be 

interpreted with caution
– Inability to understand how the algorithms work is a central concern

• Physics-guided
– Physical laws describing micromechanical responses, degradation 

mechanisms, and chemical reactivity should be utilized for data 
preprocessing
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Summary: Industry Adaptation and 
Integration of AI

111

• Welcome change for adapting 
new technologies to stay ahead

• Identify strategy pining down 
the key use cases

• Implement the AI projects 

• Get ready to accelerate

• See the bigger picture
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Thank You
Questions?



Contact Information

Halil Ceylan, Ph.D., Dist.M.ASCE 
Pitt-Des Moines, Inc. Endowed 
Professor of Civil, Construction and 
Environmental Engineering
ISU Site Director, PEGASAS - FAA COE 
on General Aviation
Director, Program for Sustainable 
Pavement Engineering & Research 
(PROSPER)
Institute for Transportation
410 Town Engineering Bldg.
Iowa State University
813 Bissell Road
Ames, IA 50011-1066

Phone: +1 (515) 294-8051
E-mail: hceylan@iastate.edu
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http://www.ccee.iastate.edu/
https://www.pegasas.aero/index.php
http://www.intrans.iastate.edu/prosper/
http://www.intrans.iastate.edu/
https://www.google.com/maps/place/Town+Engineering+Bldg,+Iowa+State+University,+Bissell+Rd,+Ames,+IA+50011/@42.0297026,-93.6539795,17z/data=!4m2!3m1!1s0x87ee70affabc45b7:0x13d75741fc8e0fff
http://www.iastate.edu/
https://www.google.com/maps/place/Town+Engineering+Bldg,+813+Bissell+Rd,+Ames,+IA+50011/@42.029591,-93.6534805,166m/data=!3m1!1e3!4m5!3m4!1s0x87ee70affabc45b7:0x13d75741fc8e0fff!8m2!3d42.0295392!4d-93.6527564
https://www.google.com/maps/place/Town+Engineering+Bldg,+813+Bissell+Rd,+Ames,+IA+50011/@42.029591,-93.6534805,166m/data=!3m1!1e3!4m5!3m4!1s0x87ee70affabc45b7:0x13d75741fc8e0fff!8m2!3d42.0295392!4d-93.6527564
mailto:hceylan@iastate.edu
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AI: Types

115(Image Source: https://www.greatillustrations.top/ProductDetail.aspx?iid=155812016&pr=42.88 ) 



Applications of AI and ML in Concrete Mix 
Design (Cont’d)

• ML can be used to optimize certain proportions of 
specific materials in the mix
– For example, Nunez et al. (2020) used hybrid ML to optimize the 

mix design for recycled aggregate concrete to use more recycled 
concrete

• In different attempts, Zhang et al. (2020) used ML and 
metaheuristic algorithms to optimize the mix proportions 
of concrete 
– Based on the multiple objectives to be achieved the slump, cost, 

and strength
– That helped to predict these parameters even before the 

construction of the project based on historical data
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Applications of AI and ML in Fresh Concrete 
Properties Prediction

117(Reference: Gamil 2023)  



Applications of AI and ML in Mechanical 
Properties Prediction

118(Reference: Gamil 2023)  



Benefits and Advantages

119

• Prediction of target properties 
– Accelerate the process of concrete mixture 

design

– A solution to the problem of screening 
optimal mixture proportions that can be 
further tailored to meet different design 
specifications

– Reduce time and labor intensity in trial-batch 
testing

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


Benefits and Advantages (Cont’d)
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• Increase accuracy
– Image-based characterization techniques can leverage the 

power of deep learning to achieve human-level accuracy 
and beyond

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


Benefits and Advantages (Cont’d)

121

• Automation
– Replace manual observations based bias 

project management

– Automatic data analysis and decision making

– Help managers 
• To better understand the construction 

project
• To formalize tacit knowledge from project 

experience
• To rapidly spot the project concerns in a 

data-driven manner

– More comprehensive picture of the site 
through various project stages without human 
interaction

(Reference: Pan and Zhang, 2021)

https://www.sciencedirect.com/science/article/pii/S0926580520310979


Benefits and Advantages (Cont’d)
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• Risk mitigation
– AI can monitor, recognize, evaluate, and predict 

potential risk in terms of 
• Safety
• Quality
• Efficiency
• Cost

– AI tools have been applied to learn collected data 
• To capture interdependencies of causes and 

accidents
• To measure the probability of failure occurrence
• To evaluate the severity of the risk from both the 

qualitative and quantitative view

– Address the limitations of traditional risk analysis

(Reference: Pan and Zhang, 2021)

https://www.sciencedirect.com/science/article/pii/S0926580520310979


Benefits and Advantages (Cont’d)
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• Improvement and acceleration of computational 
simulations
– Combination of AI techniques with kinetic, 

thermodynamic, and mechanical modeling enables 
determination of parameters that require extensive 
experimental data

– Assists materials design and optimization via high-
throughput computational simulations

• Molecular simulations that are limited by 
computational cost can immensely benefit from AI 
acceleration

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


Challenges and Concerns
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• Data challenge
– Data sparsity
– High dimensionality
– Data bias

• Representation bias
• Measurement bias
• Temporal bias
• Deployment bias

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


Challenges and Concerns (Cont’d)
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• Validation challenge
– Hold-out method
– Cross-validation

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


Challenges and Concerns (Cont’d)
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• Interpretability challenge
– Diagnostics
– Causality

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


Challenges and Concerns:
Directions

127

• Sharing data and tools
– Develop new data repositories and broaden the accessibility to 

existing data
• FHWA InfoMaterials Web portal: offer characterization data 

of pavement concrete materials

– Develop unambiguous standards for reporting and sharing 
experimental data with consistent categorization across 
research studies

– Sharing of computational methodologies (including proposed 
models, adopted procedures, and source codes) would lower 
the barriers to data and model verification

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x


Challenges and Concerns:
Directions (Cont’d)
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• Linking laboratory and field data
– Hybridization of laboratory and field data for training ML 

models

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
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• Starting with simple models
– Simpler models with fewer coefficients or assumptions are 

preferable to complex one

– Prediction accuracy and the data accuracy

– Complex models with less interpretability may only be 
utilized when additional accuracy gain is significant and 
necessary

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
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• Knowing when to trust a model
– Consensus on when to trust the models needs to be reached

• Generally adopts the 2-sigma (p value ≤ 0.05) rule to validate 
experimental results

– Reported performance measures (e.g., accuracy) of ML models 
should be interpreted with caution

• Detailed descriptions are required when reporting the 
models and their performance

• The performance of a model built for laboratory concrete is 
not necessarily a good indicator of its performance on field-
placed concrete

– Inability to understand how the algorithms work is a central 
concern

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
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• Natural language processing (NLP)
– Concrete mixture design → Immense amount of data in literature 

• Inconsistent data formats → Challenging to manually collect 
and organize

– NLP to extract materials data & establish large datasets

– Extract the process–structure–property–performance 
relationships by mining text corpora

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
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• Physics-guided
– Physical laws describing micromechanical responses, degradation 

mechanisms, and chemical reactivity should be utilized for data 
preprocessing

– Adding physics-based loss function terms, pretraining models on data 
produced by physcis-based models, encoding physical principles into 
ML architecture design

– Transforming data driven models into physics-aware surrogate models 
would 

• Increase interpretability
• Make more robust and generalizable to field-relevant scenarios
• Reduce the sample size required for training and computation cost

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
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• Critical challenge for the concrete industry is the high 
emission of greenhouse gases

(Reference: Li et al. 2022)

https://www.nature.com/articles/s41524-022-00810-x
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• AI-driven design can reduce construction costs by up to 20% 
and save 50% on material waste

• AI technology in construction and scheduling is expected to 
save 10-15% on time, resulting in substantial cost savings

• Computer vision applications in construction are expected to 
increase by over 20%
– They will help with quality control and safety monitoring

• AI-driven maintenance systems that predict maintenance can 
reduce costs by up to 30%, and downtime as much as 70%
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