Concrete Curing Methods

Dr Peter Taylor, PE (IL) FACI

IOWA STATE UNIVERSITY

Institute for Transportation

National Concrete Pavement

Technology Center

Outline

- Why
- What is it
- How
- When
- How much

Cement Hydration

- Chemical reactions between cement and water
- Will keep going as long as:
 - Sufficient cement
 - Sufficient water
 - Sufficient temperature

Effect of Curing

Effect on properties

- Strength
 - Conventional wisdom
 - Not really

Effect on properties

- Permeability
 - Yes!!!
 - Because it is a surface
 effect

Water / cement	Time
ratio	
0.40	3 days
0.45	7 days
0.50	28 days
0.60	6 months
0.70	1 year
0.80	Never

Moisture Loss

- Plastic shrinkage (before set)
- Drying shrinkage (after set)

What About Temperature?

- Hydration halves with 18°F decrease in temperature
- But the drying may not be affected
- We want to be like Goldilocks...
 - Not too hot
 - Not too cold
 - No shocks

Thermal Shrinkage

- Concrete sets while hot and is expanded then it shrinks
- Temperature peaks within the first 12 hours
- Air temperature often drops at the same
- Combined affect can be significant
- All while concrete is very weak

 Differentials >30°F will likely cause cracking

What is too hot?

Delayed ettringite formation risk increases above ~160°F

What is too cold?

- Hydration stops at about 14°F
- Freezing can occur in the pore solution
 - If mix is <500 psi

At the end of the day

- Wet enough for long enough to achieve desired hydration
- Uniformly enough to reduce drying stresses
- The right temperature to achieve desired hydration
- Avoiding temperature differentials
- Easy right?

Keep it wet Keep it warm

Moisture control

- Prevent drying
- Add water from the outside
- Add water from within

• Plastic sheets

- Evaporation Retarder
 - Between placement and finishing
 - Reduces plastic shrinkage cracking
 - Not a finishing aid beware of increasing surface w/cm

• Tent

- Curing Compound
 - Poly-alpha-methylstyrene
 - ASTM C 309 or local requirements
 - White
 - Allow for effects of texture

- Use a machine
- Apply to moist surface
- Protect from wind
- Overlap
- Protect the compound from traffic

- a.) Nozzle heights adjusted to obtain 30% overlap of adjacent spray patterns.
- b.) Nozzles must be raised to retain 30% overlap for the 250-mm PCCP.

Add water from the outside

• Flood

Add water from the outside

- Flood
- Burlap or absorbent materials

Add water from the outside

- Flood
- Burlap
- Fog

When

- Too early
 - Bleed water is trapped \rightarrow flakey surface
 - Have to wait for texturing
- Too late
 - Why bother

How Long?

- Until you have required properties at the surface
- When removing covers avoid moisture and thermal shock

Internal Curing

- Reported Benefits
 - Less shrinkage, cracking, curling
 - Better hydration & SCM reaction
 - Improved durability
 - Less cement
 - Extended service life
 - Increased sustainability

Internal Curing

- Expanded fine aggregate
- Super Absorbent Polymers
- About 7lb IC water for 100 lb cement

Internal Curing

- Place under sprinkler for minimum of 48 hours
- Allow stockpiles to drain for 12 to 15 hours immediately prior to use

- Hot Weather
 - Prevent evaporation

- Hot Weather
 - Prevent evaporation
 - As a function of bleeding

- Hot Weather
 - Cool the mixture
 - Cold water
 - Shade stockpiles
 - Liquid nitrogen
 - Fog sprays
 - Hiperpav can model cracking risk

Hot Weather

Consider placing at night

- Cold Weather
 - Heat the support system
 - Remove frost
 - Keep it warm
 - Blankets
 - Hydronics
 - Heaters
- Beware of thermal gradients

Keep it wet Keep it warm

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation