Troubleshooting Inadequately Cured Concrete or Why Did my Concrete Scale?

Iowa Better Concrete Conference

Iowa State University

November 9, 2023

Gerard Moulzolf, PG

American Engineering Testing, Inc.
Reasons for Scaling of Exterior Concrete Flatwork

1. Poor overall air content
 a. No air entrainment
 • batching error
 • wrong mix delivered
 b. extended time before placement
Reasons for Scaling of Exterior Concrete Flatwork

2. Poor finishing practices
 a. Over-finishing
 b. Working water into the surface
 c. Retempering/excessive w/cm
 d. Inadequate curing
 • Late
 • Incomplete
Reasons for Scaling of Exterior Concrete Flatwork

3. Late season placements (premature service) – lack of durability strength

4. Exposure to Salt hastens distress
 a. Lowers freezing temp of water
 b. Critical saturation due to osmosis
 c. Produces a specific environmental condition
 d. Who’s fault?
 e. …concrete was already compromised
1994-1997 Freeze-Thaw Cycles & Precipitation

Cycle Low temp ≤ 28
Precip. only Oct Nov Dec

F-T Cycles (#)	Precip (in)
1994-1995 | 60 | n/a
1995-1996 | 74 | 25.7
1996-1997 | 57 | 45.52
1998 ARMMN Study After 96-97

33 Core Samples

Air Problems 21% total
 - Low air 15%
 - No air 6%
Over-finishing 48%
Inadequate Curing 61%
Long Haul Time (>45min) 42%
High w/cm (>0.45) 39%
Late Season Placement 15%

1994-1997 Freeze-Thaw Cycles & Precipitation
2011-2014 Freeze-Thaw Cycles & Precipitation

- **2011-2012**: 65 F-T Cycles (#), 9.3 Precip (in)
- **2012-2013**: 69 F-T Cycles (#), 19.3 Precip (in)
- **2013-2014**: 52 F-T Cycles (#), 22 Precip (in)
2015 ARM Study After 13-14

16 Core Samples

- Low air: 13%
- Over-finishing: 13%
- Inadequate Curing: 44%
- w/cm <0.45: 100%
- Late Season Placement: 31%

2011-2014 Freeze-Thaw Cycles & Precipitation

<table>
<thead>
<tr>
<th>Year</th>
<th>F-T Cycles (#)</th>
<th>Precip (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2012</td>
<td>65</td>
<td>9.3</td>
</tr>
<tr>
<td>2012-2013</td>
<td>69</td>
<td>19.3</td>
</tr>
<tr>
<td>2013-2014</td>
<td>52</td>
<td>22</td>
</tr>
</tbody>
</table>
2020-2023 Freeze-Thaw Cycles & Precipitation

- 2020-2021: 57 F-T Cycles, 34 Precipitation (in)
- 2021-2022: 51 F-T Cycles, 27.5 Precipitation (in)
- 2022-2023: 73 F-T Cycles, 37.6 Precipitation (in)
PETROGRAPHY

Microscopical analysis of concrete and aggregates
PETROGRAPHY

ASTM’s
C856
C457
C1723
PETROGRAPHY

Core Sampling
Preparation of lapped and thin sections
Various microscopes
Over-finishing
Mortar Flaking
40 year old airfield pavement
SEM ANALYSIS

OPC Paste

CSH (fuzzy)

Ettringite (needly)

Ca(OH)$_2$ (tabular crystals)

Pore solutions > pH11
SEM ANALYSIS
Carbonated Paste

- Completely different microstructure
- CaCO_3 like material
- ..with residual Si, Al, Fe
- Very little ettringite
- Pore solutions close to neutral pH 7
North Dakota, 2016
North Dakota, 2013
Heavy Civil Paving

- Lower w/cm
- Comprehensively enforced
- Timely
- Curing method
New Bridge – NE USA
Spring 2014
Portland Limestone cement (PLC)
Correlation: Porosity – Compressive Strength (exp. Data by D. Herfort, Aalborg cement)

- **Compressive strength** measured
- **Total porosity** calculated

Relative change of porosity and compressive strength [%]

Amount of CaCO₃ added [wt.-%]
2020-2023 Freeze-Thaw Cycles & Precipitation

<table>
<thead>
<tr>
<th>Year</th>
<th>F-T Cycles (#)</th>
<th>Precip (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-2021</td>
<td>57</td>
<td>34</td>
</tr>
<tr>
<td>2021-2022</td>
<td>51</td>
<td>27.5</td>
</tr>
<tr>
<td>2022-2023</td>
<td>73</td>
<td>37.6</td>
</tr>
</tbody>
</table>
Thank you!